Атмосфера и климат

Сайт об атмосфере, климате и метеорологии

Атмосфера

Подписаться на эту рубрику по RSS

Заключение

Многое мы уже знаем о воздушном океане Земли. Это дает нам в руки возможность предвидеть многие процессы, происходящие в атмосфере, успешно предсказывать погоду.

Но наше познание природы бесконечно. И в той области науки, о которой мы рассказали в этой небольшой книжке, есть много проблем, ожидающих своего разрешения. Так, например, очень интересен вопрос о том, как произошла атмосфера Земли. Пока на этот вопрос мы уже не можем дать достаточно полного ответа.

Для нас ясно, что вопрос о происхождении атмосферы нельзя рассматривать вне связи с другим, более общим и более сложным вопросом — о происхождении Земли и других планет нашей солнечной системы.

Как известно, в настоящее время о том, как произошла Земля, существуют различные научные предположения, гипотезы. Одной из них, наиболее разработанной, является гипотеза акад. О. Ю. Шмидта и других советских ученых. По этой гипотезе Земля возникла из огромного газово-пылевого облака, вращавшегося некогда вокруг Солнца.

При этом Земля возникла как холодное тело. Повышение температуры во внутренних частях Земли началось позднее, благодаря выделению тепла при распаде входящих в состав Земли радиоактивных элементов. В отдельных местах земной коры, где скопилось больше радиоактивных веществ, нагревание может достигать 1000—1300 градусов; горные породы при этом плавятся и в виде магмы могут выливаться наружу через кратеры вулканов.

В соответствии с этой гипотезой происхождение земной атмосферы объясняется следующим образом. Частицы, из которых формировалась Земля, несли в себе значительное количество различных газов: углекислоты, водорода, метана, аммиака и др., а также воды. Когда эти частицы сталкивались с растущей Землей, теплота, возникавшая при соударениях, высвобождала часть газов. Из этих газов и образовалась первоначальная газовая оболочка Земли. Остававшиеся в частицах газы входили в состав твердой оболочки Земли. В дальнейшем атмосфера пополнялась за счет выделения газов из земных недр при вулканических извержениях.

Советский ученый И. М. Забелин следующим образом излагает вероятную последовательность возникновения и эволюции атмосферы. В первичной атмосфере Земли наверняка содержался углекислый газ и водород, а между ними возможна реакция, ведущая к образованию болотного газа (метана) и водяного пара.

Очевидно, в тот период сложились условия, при которых эта реакция стала возможна, и на Земле появилась вода. Насыщение первичной атмосферы водяными парами привело к тому, что после разделения поверхности на сушу и море на Земле начался круговорот воды. Можно предположить, что в это время в атмосфере под влиянием солнечного излучения (его ультрафиолетовой части) распадались молекулы углекислого газа и воды и в атмосфере начал накапливаться кислород.

В дальнейшем, с появлением на Земле растительности, началась переработка углекислого газа в процессе фотосинтеза, который ведет к выделению свободного кислорода в атмосферу и поглощению углерода растениями.

За многие миллионы лет существования Земли на ней произошли большие изменения. А так как Земля и атмосфера тесно связаны между собой, то понятно, что должны были происходить изменения и в атмосфере.

Большую роль в образовании и развитии земной атмосферы играли и играют живые организмы.

По подсчетам советского ученого акад. В. И. Вернадского в течение одного только года вся земная атмосфера несколько раз проходит через организмы животных при их дыхании и через растения — при их питании. Значит, состав атмосферы во многом зависит от ее взаимодействия с живыми организмами и растениями и должен меняться с изменениями живой природы на Земле.

Материалистическая наука исходит из того, что в природе нет непознаваемых явлений. В этом нас убеждают огромные успехи науки наших дней. Поэтому, несомненно, будет окончательно решен и вопрос о том, как произошла и как развивалась наша атмосфера.

Изучая газовую оболочку, мы все в большей степени овладеваем богатствами, в ней заключенными. Атмосфера может служить грандиозным источником некоторых видов сырья, запасы которого практически неисчерпаемы. В настоящее время из атмосферы добывают азот, кислород, аргон, неон и другие газы; все они находят важное применение в народном хозяйстве.

Азот воздуха является сырьем для производства азотной кислоты — основы удобрений, многих взрывчатых веществ, красок и т. д. В самых различных областях применяется кислород; он необходим в металлургии и в горном деле, в химической промышленности и в машиностроении, в авиации и в медицине.

Аргон и неон широко используют в светотехнике.

Пока мы еще не можем активно воздействовать на различные процессы, совершающиеся в атмосфере Земли. Несомненно, однако, что в будущем человечество научится управлять погодой, вызывать дождь, рассеивать облака и т. д. Это даст нам в руки огромные возможности для использования могучих сил природы в своих целях.

Независимо от этого для практической деятельности человека всегда будет играть очень важную роль возможность предвидения погоды. А совершенствовать методы этого предвидения возможно только при углубленном и систематическом изучении процессов, совершающихся в атмосфере.

Воздушные течения

Окружающий нас воздух находится в постоянном

Движении. В атмосфере ежедневно, ежечасно возникают и замирают разнообразные воздушные потоки; над землей постоянно движутся в различных направлениях воздушные массы; одни из них несут с собой сухость воздуха, другие — влагу, одни — прохладу, другие — высокую температуру. Когда одна воздушная масса сменяет другую, погода меняется.

Как же возникает в атмосфере движение воздуха? Исследования показали, что основной причиной возникновения воздушных течений является неравномерное распределение давления воздуха. Если на какой-то площади создается высокое давление, то избыток масс воздуха над ней начинает оттекать к областям с более низким давлением. Такое движение воздуха и представляет собой ветер.

Почему давление воздуха различно в разных местах? Причиной этого является неравномерное распределение температуры воздуха. Оно приводит к тому, что в атмосфере по соседству оказываются потоки (столбы) воздуха, нагретые по-разному. В более теплом потоке (столбе) давление воздуха с высотой уменьшается медленнее, чем в более холодном. В результате на некоторой высоте давление воздуха в более теплом потоке окажется выше, чем в холодном, что вызовет перемещение воздуха из теплого потока в холодный. Давление в столбе холодного воздуха повышается; увеличивается давление и у его основания. В результате у поверхности земли начинается движение холодного воздуха в сторону теплого.

Мы говорим — дует ветер.

Таким образом, в атмосфере воздушные массы перемещаются от мест с высоким давлением туда, где атмосферное давление ниже. И чем больше разность давлений воздуха в каких-либо двух соседних областях, тем стремительнее происходит движение воздушных потоков, тем сильнее дует ветер.

По существу таков же характер циркуляции атмосферы своего земного шара, так как на Земле всегда имеются постоянный очаг тепла (экваториальная зона) и два постоянных очага холода (районы полюсов).

Ветер характеризуется направлением и скоростью (силой). Направление ветра определяется той частью горизонта, откуда он дует (например, северный ветер, юго-западный и т. д.). Скорость ветра измеряют в метрах в секунду. В практике силу ветра определяют также баллами по специальной шкале:

Баллы Скорость ветра в метрах в секунду Название ветра Действие ветра

0 0-0,5 Штиль Дым поднимается отвесно

1 1—1,5 Тихий Отклоняется дым из труб

2 2-3 Легкий Шелестят листья деревьев

3 4-5 Слабый Колышутся тонкие ветки деревьев

4 6-8 Умеренный Качаются сучья деревьев; ветер

поднимает пыль

5 9—10 Свежий Качаются тонкие стволы деревьев;

шумят верхушки деревьев; на

воде появляются волны с ба-

рашками

6 11—12 Сильный Качаются толстые сучья деревьев

7 13—15 Крепкий Заметно гудят телеграфные прово-

да; качаются верхушки деревьев

8 16-18 Очень креп - Ветер ломает тонкие ветки и су-

кий хие сучья деревьев

9 19-21 Шторм Ветер срывает черепицу с крыш и

кирпичи с домовых труб

10 22—25 Сильный Значительные разрушения; дере-

шторм вья вырываются с корнем

11 26—29 Жестокий Большие разрушения (наблюдает-

шторм ся очень редко)

12 30 и Ураган Очень большие разрушения (на-

более блюдается очень редко)

Для измерения скорости ветра и его направления служат различные приборы. Самый простой из них — всем известный флюгер.

На высотах скорость и направление ветров определяют путем наблюдения за полетом шаров-пилотов — легких резиновых шаров, наполненных водородом. Поднимаясь вверх, такой шар одновременно уносится ветром. Наблюдая за полетом шара в специальные угломерные приборы — теодолиты, определяют скорость и направление перемещения шара-пилота на разных высотах относительно земли. Это и позволяет определять скорость и направление ветра в разных слоях воздуха.

В движении находится вся атмосфера Земли — от экватора до полюсов.

На рисунке мы приводим общую весьма упрощенную схему движения воздушных потоков над землей. У экватора атмосферное давление понижено. К тропикам и субтропикам оно сильно повышается. Затем в умеренных широтах давление воздуха снова понижается, а дальше, к полюсам, опять растет. Благодаря этому над землей существует несколько главных воздушных потоков. При этом на их движение влияет суточное вращение Земли. В результате этого вращения все движущиеся тела в нашем, северном, полушарии отклоняются вправо от своего первоначального направления. В южном полушарии это отклонение происходит влево. Поэтому в экваториальной области северного полушария дуют северо-восточные ветры, а в южном полушарии — юго-восточные. Такие постоянные ветры называются пассатами. В умеренных широтах в северном полушарии преобладают юго-западные и западные ветры, а в южном — северо-западные и западные. За полярным кругом в северном полушарии дуют северо-восточные ветры, а в южном — юго-восточные.

Приведенная схема показывает лишь общий характер движения главных воздушных потоков над землей. В действительности распределение ветров по земной поверхности значительно сложнее. В атмосфере наблюдаются самые разнообразные ветры — постоянные, дующие неделями в одном направлении с одной скоростью, и непостоянные, меняющиеся чуть не каждый час, легкие, едва заметные, и ураганные ветры, проносящиеся тысячи километров, и ветры местные.

Приведенная выше схема движения воздушных потоков над землей нарушается в первую очередь различным нагреванием суши и воды. В теплое время года суша нагревается сильнее, чем вода, поэтому летом возникают устойчивые воздушные потоки с океанов на материки, В холодное время года, когда суша сильно остывает, массы воздуха направляются с материков на океаны.

Такие постоянные ветры носят название муссонов. Муссоны влияют на пассаты. В Индии и в Африке сильные летние муссоны полностью разрушают северо-восточный пассат. Зимой муссоны здесь совпадают с пассатами и усиливают их.

В меньшем масштабе подобное явление мы наблюдаем на берегах морей. Из-за разных температур суши и воды здесь возникают периодические ветры — бризы. Днем суша нагревается сильнее воды, воздух над ней начинает подниматься вверх, а на его место притекает более холодный воздух со стороны моря. Это — морской бриз. Ночью суша охлаждается быстрее, чем вода, и холодный воздух над ней течет в сторону более теплой в это время водной поверхности. Это — береговой бриз.

Постоянство общей циркуляции атмосферы нарушается также возникновением над разными участками земной поверхности областей пониженного и повышенного давления воздухациклонов и антициклонов. Поэтому практически, в особенности на суше, в любом месте могут наблюдаться самые различные ветры с некоторым преобладанием в умеренных широтах северного полушария западных ветров, а в умеренных широтах южного полушария — восточных ветров.

Скорость ветра у земли может значительно меняться: бывает и полное безветрие и ветры ураганной скорости до 50—60 метров в секунду.

А теперь — о ветрах и высоких слоях атмосферы. Наблюдениями установлено, что с высотой средняя скорость ветра постепенно увеличивается и в средних широтах достигает максимума на высоте 10—11 километров.

За последнее время в результате длительных наблюдений над ветром в высоких слоях атмосферы установлено, что примерно на высотах 9—12 километров существует так называемое «струйное течение» воздуха. Это течение имеет поперечные размеры 300—400 километров, толщину 2—4 километра и вытягивается в длину на десятки тысяч километров, иногда опоясывая весь земной шар. В основном оно направлено с запада на восток, но может сильно изгибаться вплоть до поворота на 90 градусов. Скорость ветра в «сердцевине» струйного течения составляет, как правило, 60—80 метров в секунду, а максимальные скорости могут приближаться к 200 метрам в секунду (т. е. 720 километров в час).

О скорости и направлении ветра на больших высотах можно судить по наблюдениям за движением серебристых (светящихся) облаков, а также по движению метеоров. Эти наблюдения показывают, что в умеренных широтах в слое 30—80 километров наблюдаются восточные ветры, а выше 80—90 километров преобладают западные ветры. Над экваториальными и тропическими широтами ветры распределяются несколько иначе. В экваториальной зоне от поверхности земли до высоты 125 километров дуют восточные ветры. В тропической зоне — пассаты, находящиеся у земной поверхности, распространяются вверх до высоты 2—4 километров; выше их сменяют ветры противоположного направления — антипассаты. Затем по мере увеличения высоты антипассаты переходят в общий западный поток, который с высоты 20 километров меняется на восточный.

Скорость ветра на высотах 82—85 километров очень велика, она достигает 100—150 метров в секунду, а выше 100 километров иногда увеличивается до 200—250 метров в секунду, т. е. до 720—900 километров в час. Насколько велика такая скорость, можно судить по тому, что у земли скорость ветра при самых сильных ураганах составляет, как уже говорилось, только 50—60 метров в секунду.

Воздушные течения играют большую роль в процессах, совершающихся в атмосфере, и в практической деятельности человека. Массы воздуха, притекающие с океана на сушу, несут запасы влаги и тепла, смягчают климат. Перемещаясь из теплых мест в холодные, воздушные потоки повышают температуру воздуха. Холодные северные ветры вызывают сильное понижение температуры. Ветры, несущие слишком много влаги, несут сильные и продолжительные дожди. А кому неизвестны бури, возникающие на морях и океанах, смерчи и ураганы, производящие подчас большие разрушения на суше...

Во многих научно-популярных книгах можно встретить описание тропического урагана 1780 года, который получил название «великого урагана». Он разразился у берегов Америки в Атлантическом океане. Ураган пронесся над Антильскими островами. Особенно сильно пострадал один из этих островов — Барбадос. Тысячи людей на нем погибли под развалинами зданий. Много городов было разрушено ветром до основания, а развалины домов унесены огромными волнами, поднятыми ветром в море.

В том году шла война между Англией и Америкой и в гаванях Антильских островов стояло несколько сотен военных кораблей. Почти все они затонули.

В результате урагана погибло около сорока тысяч человек.

В последние годы сильнейшим ураганом был шторм, пронесшийся в начале 1953 года над Северным морем.

В 1959 году сильные Штормы наблюдались в США, Так, в феврале на Сент-Луис — столицу штата Миссури — обрушилась сильная гроза, а после нее над городом пронесся ураган. Страшной силы ветер сносил верхние этажи жилых домов и зданий, вырывал деревья, валил телеграфные столбы, сломал высотную башню телевидения. В ряде районов города возникли пожары. Особенно сильно пострадал центр города. Общие убытки определяются в 12 миллиардов долларов.

Жестокие ураганы очень часты у берегов Японии. Здесь их называют тайфунами. В январе 1954 года пронесшийся над Японией тайфун разрушил сотни домов, принес материальный ущерб в несколько миллионов иен. Десятки тысяч людей остались без крова.

В сентябре 1959 года над китайским островом Тайвань пронесся тайфун ураганной силы, охвативший район протяженностью 600 километров. Скорость ветра в центре тайфуна достигла 70 метров в секунду. Ураган сопровождался сильным ливнем, который вызвал наводнения на острове. Основные телефонно-телеграфные линии на острове Тайвань были разрушены. Полностью или частично было снесено свыше 3300 жилых построек. На восточном побережье Тайваня тайфун уничтожил несколько мостов и привел к большим оползням.

Ураганные ветры возникают на фронте встречи различно нагретых воздушных масс. При этом образуются мощные вихревые воздушные потоки, движущиеся с большой скоростью по спирали, поперечник которой составляет сотни километров.

Тропическим ураганам сопутствуют сильнейшие ливни, так как воздух в этих районах всегда сильно насыщен водяными парами.

Интересны и во многом еще не ясны явления природы — смерчи, или торнадо — мощные вихревые движения воздуха.

Многие из вас, конечно, видали, как летом в жаркие дни на поверхности земли возникают небольшие пыльные вихри. При грозах над сушей и над морем иногда образуются огромные вихри. Скорость вращения воздуха в них доходит до шестидесяти и более метров в секунду. Такие вихри-смерчи обладают большой разрушительной силой. Вот, например, что натворил смерч, который прошел под Москвой в 1945 году.

2 сентября во второй половине дня около станции Валентиновка Северной железной дороги в грозовом облаке на высоте 3—4 километров возник большой смерч. Опустившись к земле, он пересек железную дорогу у станции Соколовская и распался дальше в лесу. По рассказам очевидцев, это был огромный темный столб в десятки метров в диаметре. Он двигался со скоростью примерно 60 километров в час. На своем пути смерч повалил деревья и телеграфные столбы, разрушил много домов поднимал высоко в воздух доски, ветки деревьев, срывал с крыш железо и т. д.

При прохождении смерча были отмечены резкие колебания атмосферного давления.

В 1957 году наблюдался сильный шквал в Северном Приуралье. Скорость ветра при этом достигала 20— 25 метров в секунду, а скорость отдельных порывов — 30—40.

Довольно часто морские смерчи наблюдаются у нас на Черном море.

С ураганами и смерчами связано одно интересное явление природы — цветные дожди, которые в прошлом вызывали у многих людей суеверные страхи.

В начале прошлого века в Италии произошел такой случай (он был описан одним ученым):

«В течение двух суток ветер дул с востока, когда жители увидели приближающуюся со стороны моря густую тучу. В два часа пополудни туча закрыла окрестные горы и начала заслонять Солнце; цвет ее, сначала бледно-розовый стал огненно-красным. Скоро город был окутан таким густым мраком, что в четыре часа в домах пришлось зажечь лампы. Народ, испуганный темнотою и цветом тучи, бросился молиться. Мрак продолжал усиливаться, и все небо казалось состоящим из раскаленного железа. Загремел гром и начали падать крупные капли красноватой жидкости, которую одни принимали за кровь, а другие — за расплавленный металл. К ночи воздух очистился, гром и молнии прекратились, и народ успокоился».

На месте капель остались желто-коричневые пятна. В них с помощью лупы была обнаружена красноватая пыль. Исследование ее и позволило разгадать причину столь необычного дождя. Оказалось, что ураган, пронесшийся над пустыней Сахарой, поднял там в воздух большое количество красноватой пыли — охры и принес ее к берегам Италии. Смешавшись с каплями дождя, эта пыль и придала им вид крови.

Известны случаи выпадения и дождей иного цвета — оранжевых, желтых и других.

Наконец, надо сказать и о том, что ветер обладает огромной энергией.

Сила ветра издавна использовалась людьми в практических целях. Первые суда, пересекавшие моря и океаны, ходили под парусами. И сейчас парусные лодки широко используются рыбаками на всем земном шаре.

Ветер вращает крылья ветряных мельниц, ветряных двигателей. Современные ветродвигатели качают воду, приводят в движение различные машины, вырабатывают электрическую энергию. Ветер — это неисчерпаемый источник энергии. Он, несомненно, будет играть большую роль в практической деятельности людей. Недаром уже теперь ветер получил название «голубого угля».

Сколько Весит Воздух

О том, что воздух имеет вес, в наше время, пожалуй, знают все. Впервые это было установлено в XVII веке великим итальянским ученым Галилеем. Галилей решил посмотреть, не изменяется ли вес наполненной воздухом бутылки при нагревании. Проделав этот простой опыт, ученый увидел, что нагретая бутылка весит меньше, чем холодная.

Галилей дал правильное объяснение этому явлению. Очевидно, решил он, воздух имеет вес. При нагревании бутылки находящийся в ней воздух расширился, часть его вышла наружу, и вес нагретой бутылки уменьшился.

Так было опровергнуто прежнее, неправильное мнение о невесомости воздуха.

Но если воздух имеет вес, он должен оказывать давление на все предметы, находящиеся на Земле. Каково же это давление? Чему оно равняется?

Этим вопросом занимался ученик Галилея Торричелли. Он проделал такой опыт. Взяв длинную, около одного метра, запаянную с одного конца стеклянную трубку, Торричелли наполнил ее ртутью и, перевернув, опустил открытым концом в сосуд с ртутью. При этом немного ртути вылилось из трубки в сосуд, но большая ее часть осталась в трубке — на уровне около 76 сантиметров.

Что-то помешало всей ртути вылиться из трубки в сосуд. Торричелли правильно предположил, что причиной служит давление воздуха на поверхность ртути, налитой в сосуд. Это давление уравновешивается весом ртути, оставшейся в трубке.

Открытие Торричелли было подтверждено новыми опытами, которые были проделаны по просьбе известного французского ученого Паскаля его родственником Перье.

Город, в котором жил Перье, был расположен около горы. Перье решил проверить давление воздуха на различной высоте. Опыт показал, что на вершине горы высота столбика ртути в трубке меньше, чем внизу.

Для ученых стало ясно, что это явление связано с давлением воздуха. Внизу, у поверхности земли, воздух давит с большей силой, чем на вершине горы; слой всего атмосферного воздуха, давящего на предметы, на уровне вершины горы тоньше, чем на уровне ее подножья.

Опытами Перье было окончательно доказано, что воздух имеет вес и давит на все окружающие нас тела.

Теперь мы знаем, что вес одного кубического метра воздуха у земной поверхности равен 1,293 килограмма. На высоте 12 километров этот вес уменьшается до 319 граммов, а на высоте 40 километров кубический метр воздуха весит всего 4 грамма. У поверхности земли, где воздух наиболее плотен и тяжел, он в 770 раз легче воды. Это значит, что воздух, содержащийся в литровой бутылке, весит примерно столько же, сколько весит вода в наперстке.

Наглядно убедиться в давлении воздуха можно на очень простом опыте. Налейте в стакан с ровными краями воды до самого верха, покройте его листом бумаги и, придерживая лист рукой, быстро переверните стакан. Теперь вы можете отнять от бумаги руку, вода из стакана не выльется. Лист бумаги как бы прилипнет к стакану. Это объясняется тем, что воздух давит на бумагу и крепко прижимает ее к краям стакана. Давление воды в стакане на бумажный лист меньше, чем давление наружного воздуха.

Наглядно показывает давление воздуха и следующий пример. Положите на стол лист газеты так, чтобы край его совпадал с краем стола, а под этот лист, «в его середине,— обычную деревянную чертежную линейку (примерно на 2/3 ее длины). Если теперь «вы ударите по концу линейки, то вы увидите, что лист почти не тронется с места, а линейка при сильном ударе может даже переломиться. Причина здесь та же: воздух, давящий на лист газеты, прижимает его к столу так, что удар по линейке должен преодолеть не только вес самого листа, но и вес давящего на лист воздуха.

Давление воздуха измеряется с помощью особых приборов — барометров. Первым таким прибором была, по существу, трубка Торричелли. Если позади нее поставить шкалу, разделенную на миллиметры, то давление воздуха можно измерять по высоте ртутного столба в трубке, или, как говорят, «в миллиметрах ртутного столба» (в мм рт. ст.). Этот прибор получил название ртутного барометра.

В настоящее время в метеорологии величину давления воздуха обычно выражают не высотой ртутного столба, а в особых единицах давления — миллибарах. Один миллибар (сокращённо мб) примерно равен тому давлению, которое оказывает тело весом 1 грамм на поверхность в один квадратный сантиметр. Миллибар равен приблизительно 0,75 мм рт. ст.

Часто атмосферное давление измеряют с помощью так называемого барометра-анероида — полой металлической коробки, из которой выкачан воздух. В зависимости от величины давления наружный воздух сжимает стенки коробки то с большей, то с меньшей силой. С помощью рычажков это передается стрелке, которая и показывает на шкале величину атмосферного давления.

Существует и такой прибор, который непрерывно автоматически записывает на бумажной ленте изменения давления воздуха; его называют барографом.

В физике единицей давления является так называемая физическая атмосфера. Это — давление воздуха на широте 45 градусов, на уровне моря при 0 градусов Цельсия. Для такого давления высота столбика ртути с площадью поперечного сечения в 1 квадратный сантиметр составляет 760 миллиметров. Такое давление принято считать нормальным атмосферным давлением.

Отсюда мы можем узнать величину атмосферного давления на каждый квадратный сантиметр поверхности Земли. Давление воздуха на один квадратный сантиметр земной поверхности будет равно весу столбика ртути с площадью поперечного сечения в 1 квадратный сантиметр и высотой в 760 миллиметров. Этот вес равен 1,033 килограмма.

Если теперь мы рассчитаем, какое давление воздуха испытывает поверхность человеческого тела, то полученные цифры покажутся неправдоподобно большими.

Поверхность тела человека среднего роста равна примерно 15 000 квадратных сантиметров. Следовательно, она должна испытывать давление в 15 500 килограммов, т. е. более 15 тонн. На ладонь человека, площадь которой равна примерно 150 квадратным сантиметрам, воздух давит с силой 150 килограммов, а это вес двух взрослых человек.

Мы не ощущаем такого огромного давления потому, что давление воздуха внутри нашего тела равно атмосферному и тем самым оно уравновешивает внешнее давление. Организм человека и животных приспособлен к такому давлению воздуха.

Если наружное давление воздуха понижается более чем вдвое, воздух, находящийся внутри тела человека или животного, начинает его раздувать. Кожа при этом может трескаться и кровоточить. Человек испытывает головокружение и часто теряет сознание. Вот почему на современных высотных самолетах кабины летчика и пассажиров делаются непроницаемыми для воздуха; в них искусственно поддерживается давление, близкое к давлению у поверхности Земли.

На высоте 15 километров наибольшая разность давлений снаружи и внутри кабины достигает 0,91 килограмма на квадратный сантиметр. А это значит, что, например, дверца кабины высотой 1,5 метра, шириной 60 сантиметров, т. е. площадью в 9000 квадратных сантиметров, будет испытывать давление 0,91 X 9000 = 8190 килограммов, т. е. больше 8 тонн. При такой нагрузке двери и окна кабины должны быть сделаны из особо прочных материалов.

Мы можем подсчитать и вес всей земной атмосферы. Поверхность Земли равна 510 миллионам квадратных километров. Каждый квадратный километр испытывает давление в 10 130 000 тонн. Значит, вся атмосфера весит более 5 квадриллионов (5 000 000 000 000 000) тонн.

Кстати, это не так уж много по сравнению со всей массой Земли, всего одна ее миллионная часть.

Так как нижние слои воздуха значительно плотнее верхних (на нижние слои давят верхние), то основная часть веса атмосферы сосредоточена внизу, ближе к земной поверхности. До высоты 5 километров расположена половина веса всей атмосферы, а выше 15 километров остается всего 0,1 ее веса.

Введение

В этой небольшой книге рассказывается о воздушной оболочке Земли — атмосфере. Без воздуха наша планета была бы мертва, нема и бесплодна.

Каждый живой организм дышит. Человек вдыхает и выдыхает в сутки примерно 13 кубических метров воздуха. Из воздуха, наполняющего легкие человека или животного, «в кровь поступает кислород, а из крови в воздух выделяется углекислый газ. Этот газообмен — важнейший жизненный процесс.

Дышат и растения. Днем, при солнечном свете, растения поглощают углекислоту и выделяют кислород. Ночью, в темноте, они, наоборот, поглощают кислород и выделяют углекислый газ.

Кислородом воздуха, растворенного в воде, дышат обитатели морей и рек.

Человек и животные не могут пробыть в безвоздушной среде и нескольких минут.

Если бы Земля не имела атмосферы, на ней царила бы полная тишина; ведь звук — это колебание частиц воздуха.

Небо вместо голубого было бы черным. Голубой цвет неба объясняется тем, что солнечный свет рассеивается частицами воздуха; при этом более всего рассеиваются лучи голубые и синие.

Светло было бы только там, куда попадали бы прямые солнечные лучи. Достаточно было бы сделать шаг с освещенной поверхности, чтобы оказаться в непроглядной тьме.

Освещенная часть Земли раскалялась бы под палящими лучами ослепительно яркого Солнца до температуры выше кипения воды, а ночью стояли бы сильнейшие морозы. Воздушная оболочка — это как бы одежда нашей планеты: днем она защищает нас от обжигающих лучей Солнца, а ночью сохраняет тепло, накопленное за день.

Атмосфера Земли играет большую роль и в практической деятельности человека. С давних пор люди используют энергию движения воздуха — силу ветра. Ветер приводит в движение парусные суда, вращает крылья ветродвигателей. В атмосфере совершаются полеты на самолетах, планерах, аэростатах. Воздух и входящие в его состав газы широко используются в технике.

Атмосфера — среда, в которой происходят все явления погоды, а погода в жизни людей имеет исключительно большое значение. Нет, пожалуй, ни одной отрасли деятельности человека, которая не зависела бы в той или иной степени от условий погоды, т. е. от состояния атмосферы. Люди с давних времен стремились к познанию явлений, происходящих в атмосфере. Еще знаменитый древнегреческий ученый Аристотель более 2000 лет назад написал об атмосфере книгу под названием «Метеорология». Теперь метеорологией называют науку, которая изучает воздушную оболочку Земли и физические процессы, происходящие в ней.

Один из основных разделов метеорологии — климатология. Климатология изучает многолетний режим погоды в том или ином месте земного шара, зависящий от географических условий. Практической задачей климатологии является характеристика обычных условий погоды, при которых протекает человеческая деятельность в том или ином районе. Вторым основным разделом метеорологии считается синоптическая метеорология; она исследует общие процессы в атмосфере, развивающиеся на больших пространствах и влияющие на погоду. Синоптическая метеорология разрабатывает методы предсказания погоды. Изучением верхних слоев атмосферы занимается аэрология. Этот раздел метеорологии начал развиваться лишь в последнее время, когда усовершенствовалась техника исследования высоких слоев атмосферы. В настоящее время для исследования верхних слоев атмосферы применяются метеорологические ракеты, а также искусственные спутники Земли.

Процессы в атмосфере не происходят изолированно; так, между атмосферой и земной поверхностью идет непрерывный обмен теплом и влагой, многие атмосферные явления связаны с деятельностью Солнца и т. д. Поэтому метеорология тесно связана с другими естественными науками.

Что же мы знаем в настоящее время о воздушной оболочке нашей планеты? Познакомимся с ее строением и свойствами.

О границе атмосферы

Попытки установить верхнюю границу атмосферы шли разными путями. Так, предполагалось принять за наружную границу атмосферы высоту начала сферы рассеяния, т. е. 800 километров, исходя из того, что именно в этой сфере начинает происходить переход газовых частиц атмосферы в межпланетное пространство.

Предполагалось также за границу атмосферы принять ту высоту, до которой происходят какие-либо физические явления в газах, наблюдаемые с земли. К ним относятся, в частности, полярные сияния. Специальные измерения показали, что полярные сияния наблюдаются на высотах до 1000—1100 километров над поверхностью земли. Выше этого предела подобные явления уже не обнаруживаются, поэтому высоту в 1100 километров можно было считать верхней границей атмосферы.

Однако новые исследования, при помощи ракет и искусственных спутников Земли, привели к выводу, что верхняя граница атмосферы находится значительно выше— на высоте порядка 2000—3000 километров.

Интересно отметить также, что наблюдения над свечением ночного неба позволили обнаружить, что внешняя форма воздушной оболочки Земли не шарообразна, а вытянута с «ночной стороны» Земли наподобие кометного хвоста. Длина этого газового хвоста Земли достигает 100 000 километров, а его свечение свидетельствует о том, что он состоит из кислорода и азота. Ученые полагают, что причиной возникновения такого газового хвоста является давление солнечных лучей на частицы самых верхних слоев атмосферы.

Четыре яруса атмосферы

В настоящее время атмосферу принято делить по высоте на четыре слоя: тропосферу, стратосферу, мезосферу и термосферу.

Тропосфера — ближайший к поверхности земли слой атмосферы. Толщина этого слоя не одинакова: над экватором она доходит до 16—18 километров, а над полюсами 7—9. В тропосфере сосредоточено примерно 0,8 всей массы атмосферы и почти весь имеющийся в атмосфере водяной пар. Воздух в тропосфере постоянно перемешивается. Температура воздуха в этом слое понижается с высотой. В тропосфере происходит конденсация водяных паров. Здесь образуются туманы и облака, дожди и снегопады, грозы и метели, бури и ураганы, т. е. все те явления, которые определяют погоду. Естественно, что с практической точки зрения указанный слой представляет наибольший интерес. В тропосфере проведены многочисленные точные наблюдения над отдельными явлениями. Это — наиболее изученный слой атмосферы.

Над тропосферой расположен второй ярус атмосферы — стратосфера; она простирается примерно до высоты 40 километров.

В стратосфере температура почти постоянна по высоте или несколько повышается с высотой. В умеренных широтах температура в стратосфере в среднем равна 45—55 градусам ниже нуля.

Так как в стратосфере почти нет водяного пара, то в ней нет облаков тех видов, которые находятся в тропосфере. Лишь изредка там образуются упомянутые выше перламутровые и серебристые облака.

Стратосфера отделена от тропосферы переходным слоем толщиной 1—3 километра; его называют тропопаузой. Высота тропопаузы не постоянна и колеблется в некоторых пределах по временам года. Летом тропопауза расположена выше, чем зимой.

С развитием реактивной авиации изучение стратосферы приобрело большое практическое значение. Полеты в стратосфере имеют много преимуществ. Малая плотность воздуха позволяет значительно увеличивать скорость и дальность полетов самолетов. В стратосфере всегда безоблачно и ясно.

Выше стратосферы лежит мезосфера, в которой температура сначала возрастает с высотой до уровня 50—60 километров, а затем убывает.

Выше 80 километров расположена термосфера, температура в которой неуклонно возрастает с высотой. Расчеты и наблюдения показывают, что температура здесь может достигать нескольких сотен и даже тысяч градусов. Нужно, однако, иметь в виду, что понятие температуры в очень разреженной газовой среде, какую мы имеем в верхних слоях атмосферы, имеет несколько иное значение, чем обычное понятие температуры воздуха. Молекулы газов, входящих в состав атмосферного воздуха, на больших высотах находятся на большом расстоянии друг от друга. И хотя эти молекулы движутся очень быстро, любое тело, попавшее в такую сильно разреженную среду, не будет нагреваться при соприкосновении с окружающим воздухом, так как число частиц газов, ударяющихся об это тело и передающих ему свою энергию, слишком мало. Нагреваться тело в таких условиях будет лишь непосредственно от солнечных лучей.

Нагревание тела, находящегося в разреженной атмосфере, за счет поглощения им солнечного излучения, может быть очень большим. Так, при полетах советских стратостатов «СССР-1» и «Осоавиахим» температура воздуха в кабинах все время держалась без подогрева около +15 градусов, хотя температура наружного воздуха была ниже —40 градусов. Объясняется это тем, что кабина стратостата все время вращалась, поочередно подставляя под лучи Солнца разные стороны. Последние были окрашены в различные цвета — черный и белый; при этом черная часть стенок кабины поглощала больше солнечной энергии и сильно нагревалась, а белая нагревалась значительно меньше. При вращении кабины нагрев ее оставался постоянным на уровне 15 градусов тепла.

Известен случай, когда при полете стратостата швейцарского ученого Пикара в 1931 году поворачивающий кабину механизм отказал, и она оказалась повернутой к Солнцу все время одной стороной, окрашенной в черный цвет. В результате кабина так нагрелась, что температура внутри нее поднялась до 38 градусов тепла.

Состав воздуха в термосфере также несколько отличается от приземного. В результате воздействия ультрафиолетового излучения Солнца в термосфере молекулы азота и кислорода распадаются на атомы (диссоциируют), появляются так называемые атомарные кислород и азот.

Кроме того, в термосфере, под действием разнообразных видов излучения Солнца и звезд, происходит ионизация.

Вспомним строение атомов.

Атом состоит из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов. В обычном, нормальном состоянии атома положительный заряд его ядра и отрицательный заряд электронов равны между собой и атом электрически нейтрален.

Но некоторые электроны в атоме непрочно связаны с ядром и поэтому в определенных условиях атомы и молекулы могут терять один или несколько электронов. В этом случае они превращаются в положительно заряженные частицы, а отделившийся электрон может присоединиться к какому-нибудь другому нейтральному атому (молекуле) и образовать отрицательно заряженную частицу.

Такие положительно и отрицательно заряженные частицы, атомы и молекулы, называют ионами, а процесс образования ионов называется ионизацией.

В результате ионизации в термосфере образуется несколько слоев, содержащих в значительном количестве ионизованные молекулы и атомы атмосферных газов, а также свободные электроны. Эти слои носят название ионосферы. Слои в ионосфере обозначают буквами латинского алфавита. Вначале были обнаружены два слоя: слой Е, расположенный на высоте около 100 километров, и слой F, который находится на высоте около 200 километров. Позднее было установлено, что слой F при некоторых условиях в свою очередь делится на два слоя: F1— на высоте около 180—200 километров и F2—на высоте 230—250 километров. Кроме того, ниже, в пределах стратосферы, на высоте 50—65 километров в дневные часы суток иногда возникает еще один слой — слой D. Последний не столько отражает радиоволны, сколько их поглощает.

Все эти слои, конечно, не имеют резко выраженных границ, они постепенно переходят один в другой.

Высоту ионизованных слоев определяли при помощи радиоволн. Направив вертикально вверх короткий радиосигнал, мы можем определить время, через которое он вернется обратно к земной поверхности после отражения от ионизованного слоя. Зная, что радиоволны распространяются со скоростью света, т. е. около 300 000 километров в секунду, можно подсчитать высоту слоя, от которого отразился посланный нами радиосигнал.

Представляя собой сильно разреженную газовую среду, содержащую большое число ионов и свободных электронов, ионосфера хорошо проводит электричество. Короткие радиоволны, достигая ионизованных слоев, отражаются от них и возвращаются к земле. Благодаря многократному отражению от ионизованных слоев и земной поверхности радиоволны пробегают огромные расстояния и могут огибать весь земной шар.

В ионосфере совершается много интересных явлений природы. Временами мы наблюдаем полярные сияния, свечение ночного неба, «падающие звезды»— метеоры.

Ученым удалось установить, что в спектре свечения ночного неба есть много линий и полос поглощения, характерных для различных газов. По этим линиям и полосам в высоких слоях атмосферы и были обнаружены атомарный кислород, натрий и атомарный азот. Оказалось, что спектр свечения ночного неба во многом сходен со спектром полярных сияний.

О строении высоких слоев атмосферы мы узнаем также из наблюдений за метеорами. В атмосферу Земли постоянно влетают твердые частицы из межпланетного пространства. Как правило, они очень малы. Влетая в земную атмосферу с огромной скоростью, частицы сталкиваются с молекулами воздуха, сильно разогреваются и начинают ярко светиться. Большинство частиц полностью «сгорает», распыляется в воздухе; лишь в отдельных, редких случаях, когда космический «гость» имеет большие размеры, он не успевает полностью «сгореть» при полете в атмосфере и достигает земной поверхности. На землю падает метеорит.

Метеор оставляет в атмосфере след, состоящий из раскаленных газов и пыли. Этот след сохраняется некоторое время и перемещается вместе с воздушным потоком. Наблюдая за ним, можно судить о скорости и направлении ветра на той высоте, где появился след метеора. Чаще всего метеоры становятся видимыми на высотах от 200 до 120 километров и потухают на высотах от 100 до 30 километров. Это говорит о том, что до высоты 200 километров атмосфера имеет еще достаточную плотность.

В последнее время за метеорами наблюдают при помощи радиолокационных станций. Метеорные частицы и их следы отражают очень короткие электромагнитные волны порядка 30 сантиметров и менее. С помощью особого электромагнитного прибора конструкции проф. Калашникова можно заметить появление самого маленького метеора в любую погоду.

Изучение следов метеоров в ионосфере показало, что в ней дуют постоянные сильные западные ветры.

Внешняя часть термосферы, расположенная выше 800 километров, называется экзосферой, или сферой рассеяния. В этом слое газы настолько разрежены, что их частицы находятся на больших расстояниях друг от друга. Скорости движения газовых молекул в сфере рассеяния так велики, что молекулы начинают преодолевать земное притяжение и улетают в межпланетное пространство.

Таким образом, из сферы рассеяния хотя и медленно, но непрерывно идет утечка газов в мировое пространство. Больше всего рассеиваются частицы легких газов— водорода, гелия, неона. Верхнюю границу сферы рассеяния установить трудно, так как она постепенно переходит в межпланетное пространство.

Если говорить о распределении массы атмосферного воздуха по высоте применительно к указанным четырем слоям атмосферы, то оказывается, что около 4/5 всей массы атмосферы находится в тропосфере и около 1/5 — в стратосфере. В мезосфере находится не более 0,3%, а в термосфере — менее 0,05% всей массы атмосферы.

Таковы четыре яруса нашей атмосферы.

Рассмотренные нами характеристики различных слоев атмосферы не означают, что эти разные слои атмосферы совершенно изолированы друг от друга, что они существуют самостоятельно. Приведенное выше деление атмосферы на несколько слоев в достаточной степени условно.

Мы уже говорили о том, что основную роль в развитии атмосферных процессов на Земле играет Солнце. Однако вопрос о солнечной активности в изменении погоды еще мало изучен, главным образом из-за того, что до последнего времени не было точных инструментальных наблюдений над состоянием высоких слоев атмосферы. Сейчас этот пробел успешно заполняется наблюдениями при помощи ракет и искусственных спутников Земли. Однако и с помощью обычных, ранее применявшихся наблюдений наукой установлены некоторые особенности атмосферных процессов в связи с солнечной активностью. Такая связь, в частности, обнаружена при изучении солнечных пятен. Как известно, максимум пятен повторяется примерно через каждые 11 лет. Установлено, что периодичность в изменении количеств солнечных пятен обусловливает и периодичность некоторых явлений на Земле. Так, при увеличении числа пятен на Солнце, в тропиках, в зоне Азия — Австралия, наблюдается понижение давления воздуха, а в зоне Америки и восточной части Тихого океана — повышение. Известно также, что наводнения в долине Нила повторяются через 22 года, т. е. через два периода между очередными максимумами солнечных пятен.

Как уже говорилось, излучение Солнца вызывает образование ионизированных слоев в атмосфере Земли. Солнце является также источником различных электрически заряженных частиц — корпускул, выбрасываемых в межпланетное пространство. Наблюдения показывают, что приближение этих частиц к Земле вызывает в ее атмосфере целый ряд явлений. Возникают возмущения в магнитном поле Земли, появляются полярные сияния, нарушаются нормальные условия отражения радиоволи от ионосферных слоев.

Все виды солнечного излучения оказывают непосредственное влияние лишь на очень высокие слои атмосферы. Например, ультрафиолетовое излучение Солнца практически достигает поверхности Земли лишь в ничтожно малых количествах, поглощаясь по пути атмосферным воздухом и особенно входящим в его состав озоном. Корпускулярное излучение также проникает в земную атмосферу лишь до высот порядка 60— 70 километров над земной поверхностью.

Однако в последние годы снова обращено внимание на то, что целый ряд явлений, наблюдающихся в нижних слоях атмосферы, все же связан с изменением солнечной активности. Помимо уже приводившихся примеров, обращает на себя внимание то, что в периоды максимумов - солнечной активности температуры в тропических поясах Земли приблизительно на полградуса ниже, чем в периоды минимумов. Неоднократно обнаруживалась связь между солнечной активностью и числом гроз и т. д. Все это приводит к мысли, что в атмосфере Земли действует какой-то еще недостаточно исследованный механизм, обусловливающий связь изменений погоды на земном шаре с солнечной активностью.

В настоящее время есть предположение, что между верхними и нижними слоями атмосферы существует достаточно интенсивный обмен, в процессе которого энергия, поглощаемая верхними слоями атмосферы, переносится в ее нижние слои. Однако выяснить этот вопрос можно лишь путем подробных исследований атмосферы по вертикали до больших высот.

Все это свидетельствует о том, что явления, происходящие в атмосфере, нужно рассматривать в их взаимной связи друг с другом, в их зависимости друг от друга. Точно так же нельзя рассматривать атмосферу вне ее взаимодействия с Солнцем и земной поверхностью. Твердая, жидкая и воздушная оболочки Земли тесно связаны друг с другом.

Исследования последнего времени показывают, что атмосферу Земли трудно отделить от межпланетного пространства. На верхние слои атмосферы, несомненно, действуют процессы, происходящие в мировом пространстве.

Новый этап в исследовании атмосферы

До последнего времени атмосфера была исследована более или менее подробно до высоты 100 километров. Наиболее полные сведения были получены для нижнего слоя атмосферы — тропосферы, в которой, как уже говорилось, происходят все те явления, которые обусловливают погоду. Однако развитие высотной авиации и стремление человечества проникнуть в межпланетное пространство потребовали более тщательного исследования верхних слоев атмосферы. Этого же требовало изучение распространения радиоволн в верхней атмосфере.

Инструментальные исследования атмосферы на больших высотах стали возможны при помощи ракет и искусственных спутников Земли. Ведущую роль в этих исследованиях занимает советская наука.

Особенно большое развитие такие исследования получили в связи с работами по программе Международного геофизического года.

В соответствии с этой программой в нашей стране запущено большое количество ракет с метеорологическими (геофизическими) приборами. Советские ученые производят исследования атмосферы при помощи ракет в Арктике, в Европейской части СССР и в Антарктике.

4 октября 1957 года Советский Союз открыл эпоху завоевания космоса, успешно запустив первый в мире искусственный спутник Земли. Через месяц, 3 ноября 1957 года, у нас был запущен второй искусственный спутник Земли. Этот спутник, весом 508,3 килограмма, имел помимо научной аппаратуры на своем борту подопытное животное — собаку «Лайка». Наконец, 15 мая 1958 года советские ученые произвели запуск третьего искусственного спутника Земли, весом в 1327 килограммов— подлинную летающую научную лабораторию.

Кроме искусственных спутников Земли, в СССР в 1959 году были успешно запущены три мощные ракеты в сторону Луны. Первая из этих ракет, стартовавшая 2 января 1959 года, вышла из сферы земного притяжения, прошла на расстоянии около 5000 километров от Луны и превратилась в первую искусственную планету солнечной системы. Помимо исследования непосредственно межпланетного пространства, эта ракета позволила получить и ряд дополнительных сведений об атмосфере Земли.

Вторая ракета, запущенная в СССР в сторону Луны 12 сентября 1959 года, достигла Луны в 0 часов 02 минуты 24 секунды 14 сентября. Последняя ее ступень имела вес 1511 килограммов (без топлива). Она несла на себе контейнер с научной и радиотехнической аппаратурой. Подлинным триумфом советской науки и техники явилась исключительная точность выведения ракеты на орбиту, необходимую для попадания в Луну!

Вся научная аппаратура и средства радиосвязи во время полета ракеты действовали безукоризненно. Работа радиосредств, установленных в контейнере с научной и измерительной аппаратурой, прекратилась только в момент встречи с Луной.

Ровно через два года после запуска первого советского искусственного спутника Земли, 4 октября 1959 года, стартовала третья советская космическая ракета, на борту которой была установлена автоматическая межпланетная станция. Эта станция совершила облет Луны и выполнила обширную программу научных наблюдений, включая фотографирование невидимой с Земли стороны Луны.

Основными вопросами исследований атмосферы при помощи ракет и спутников являются: определение температуры, давления и химического состава атмосферы на различных высотах, изучение свойств ионосферы (концентрации ионов и электронов и др.)» исследование космических лучей, изучение коротковолновой ультрафиолетовой части спектра, изучение микрометеоритов, исследование земного магнитного поля.

Полеты советских ракет и искусственных спутников Земли уже дали нам весьма ценные данные о строении атмосферы и процессах, в ней совершающихся. Пока еще не все материалы наблюдений обработаны и опубликованы. Но уже то, что опубликовано, заставляет сейчас пересмотреть многие представления о состоянии атмосферы на больших высотах.

Искусственные спутники Земли позволили достаточно точно определить величины плотности атмосферы до высоты 600—800 километров. Изучение плотности при этом шло различными путями. На третьем спутнике, например, были впервые установлены специального типа манометры, с помощью которых была измерена плотность в области высот 225—500 километров. Были использованы наблюдения за расплыванием облака паров натрия, образованного на высоте 430 километров при полете высотной ракеты. По этим наблюдениям была рассчитана плотность атмосферы на указанной высоте.

Исследованиями установлено, что плотность атмосферы на больших высотах убывает с высотой значительно медленнее, чем на более низких высотах. Кроме того, плотность на освещенной стороне Земли существенно больше, чем на затемненной, ночной, и достигает наибольшего значения в полуденное время. Оказалось также, что над полярными районами атмосфера плотнее, чем над экваториальными.

По торможению спутников в полете были получены некоторые данные о температуре верхней атмосферы. На высотах 228 и 368 километров температура изменяется в пределах 800—1500 градусов.

При полете третьего советского искусственного спутника Земли установленные на его поверхности кремниевые электрические батареи изменяли свою температуру в пределах от + 16 до +30 градусов.

С помощью специальных физических приборов — масс-спектрометров, установленных на третьем спутнике, были получены данные о химическом составе ионосферы на высотах 226—1000 километров. Эти данные свидетельствуют о том, что от высоты 226 километров до высоты по крайней мере 800 километров основным газом, ионизованные частицы которого образуют ионосферу, является атомарный кислород. Что касается атомарного азота, то оказалось, что его относительное содержание по отношению к атомарному кислороду меняется от 1 до 10 процентов в зависимости от высоты и географической широты; оно изменяется также по времени.

Важные данные были получены и в отношении концентрации заряженных частиц в ионосфере. Установлено, что на высоте 2000—3000 километров в каждом кубическом сантиметре пространства содержится по несколько сотен электронов. Значит, атмосфера Земли простирается до 2000—3000 километров, а не на 1000 километров, как это предполагалось ранее.

Измерения на ракетах и спутниках позволили обнаружить в верхних слоях атмосферы множество заряженных частиц — протонов и электронов — с самыми различными скоростями движения. Эта «лавина» протонов и электронов сильно ионизует верхние слои атмосферы, что и обусловливает их значительное нагревание.

Сталкиваясь с атомами и молекулами, быстрые электроны создают рентгеновские лучи. Это открытие поставило вопрос о серьезном препятствии на пути человека в межпланетное пространство, так как сильное рентгеновское излучение способно вызывать лучевую болезнь. В результате возникает необходимость как применения специальных мер защиты будущих астронавтов от влияния вредного излучения, так и тщательного выбора траекторий ракет с астронавтами, с таким расчетом, чтобы пребывание ракеты внутри особо опасных зон не было длительным.

Рассказанным далеко не исчерпывается все богатство данных о верхних слоях атмосферы, полученных и получаемых при помощи ракет и искусственных спутников Земли.

Вода В Атмосфере

Вода поступает в атмосферу, испаряясь с поверхности океанов и морей, рек и озер, увлажненной почвы, лесов и лугов. Конечно, больше всего испарений идет от поверхности океанов и морей, так как они занимают около 71 процента всей поверхности земного шара.

В атмосфере постоянно находится около 10 000 миллиардов тонн воды в виде пара. Это означает, что над каждым гектаром земной поверхности в воздухе содержится в среднем более 200 тонн воды.

При этом в атмосфере происходит непрерывный круговорот водяного пара. Испаряясь с поверхности землиокеанов и с материков), водяной пар распространяется в атмосфере. Воздушные течения переносят его на далекие расстояния. При конденсации водяного пара возникают облака и осадки; в виде осадков вода вновь возвращается на земную поверхность.

По расчетам советского ученого М. И. Львовича с поверхности океанов в течение года испаряется около 450 тысяч кубических километров воды, т. е. слой воды толщиной в среднем 1,24 метра. С материков за год испаряется около 71 тысячи кубических километров воды. Осадков на материки выпадает 107 тысяч кубических километров, а над океанами — свыше 410.

По приближенным расчетам в атмосфере в виде водяного пара находится в среднем зимой 13 080 кубических километров воды, а летом— 14 540. Так как за год осадков на земном шаре выпадает примерно в 40 раз больше, нетрудно видеть, что круговорот воды в атмосфере очень интенсивен. Если учесть при этом, что как на испарение, так и на конденсацию влаги расходуется большое количество тепловой энергии, становится очевидным исключительно большое значение круговорота воды в процессах, совершающихся в атмосфере.

Содержание водяного пара в воздухе (влажность воздуха) определяют с помощью специальных приборов— волосного гигрометра и психрометра. В волосном гигрометре используется свойство волоса удлиняться при увеличении влажности воздуха. Если воздух становится более сухим, волос, наоборот, укорачивается. Таким образом, соединенный со стрелкой или с пером, записывающим на бумажной ленте кривую влажности, волос может показывать количество водяного пара в воздухе.

Более точный прибор — психрометр. Он состоит из двух ртутных термометров. Шарик с ртутью одного из термометров обернут лентой из тонкой материи (обычно батиста), а концы ленты опущены в воду.

Вода из батиста, покрывающего резервуар термометра, будет испаряться. Быстрота испарения зависит от влажности воздуха. Чем суше воздух, тем испарение протекает быстрее, чем влажность воздуха больше, тем испарение идет медленнее.

Испарение воды может происходить лишь при затрате теплоты. Тепло поступает из двух источников: от окружающего воздуха и от резервуара с ртутью термометра. Поскольку на процесс испарения идет часть тепла от ртути, то температура ее понижается и смоченный термометр охлаждается. Температуру воздуха покажет только сухой термометр, показание же смоченного термометра будет ниже, чем сухого. Чем быстрее будет происходить испарение, тем больше тепла в единицу времени будет расходоваться ртутью смоченного термометра, и показания последнего станут ниже. Поэтому, чем суше воздух, тем больше разница в показаниях сухого и смоченного термометров. При большой влажности разница невелика; когда же влажность достигнет 100%, то показания обоих термометров станут одинаковыми.

Таким образом, по разности показаний сухого и смоченного термометров можно судить о влажности воздуха. Расчеты производятся при помощи специальных таблиц.

Известно, что любой газ при определенной температуре переходит в жидкое или твердое состояние. Так, например, при температуре ниже 183 градусов кислород превращается в жидкость. Однако в атмосферных условиях сжижение газов, входящих в состав воздуха, не наблюдается, за исключением водяного пара. Находящийся в воздухе водяной пар может превращаться как в капли воды, так и в кристаллы льда. Происходит это следующим образом.

Молекулы воды непрерывно движутся. При этом некоторые из них, находящиеся близко к поверхности воды, отрываются от нее и поступают в воздух. Часть из молекул остается в воздухе в виде водяного пара, часть возвращается обратно в воду.

Мы уже знаем, что с повышением температуры скорость движения молекул возрастает; при этом количество частиц, поступающее в воздух, увеличивается. Другими словами, увеличивается испарение.

Однако оно не может происходить до бесконечности. Наступает такой момент, когда количество испаряющихся молекул становится равным количеству возвращающихся в воду. Это значит, что теперь пространство над водой полностью насыщено водяным паром. Испарение прекращается. Если теперь ввести в это пространство немного водяного пара, то его молекулы начнут соединяться в капли воды.

Вспомните белое облачко над кипящим чайником,— по существу, его уже нельзя назвать водяным паром. Это не пар, а скопление огромного количества очень мелких капелек воды.

Водяной пар, насыщающий воздушное пространство, называется насыщающим паром. Его количество зависит от температуры, оно тем больше, чем выше температура воздуха. При —30 градусах для насыщения одного кубического метра воздушного пространства достаточно всего одного грамма водяного пара, а при +30 градусах нужно уже 30 граммов.

Если при —5 градусах в одном кубическом метре воздуха вместо трех граммов водяного пара окажется пять граммов, то излишек водяного пара превратится в жидкость. Такое явление наблюдается и при понижении температуры воздуха; при этом может образоваться излишек водяного пара, который будет превращаться в капли воды.

Конденсация водяного пара в воздухе может, однако, начаться только при одном важном условии: в воздухе должны находиться ядра конденсации, о которых мы говорили выше; на них оседает водяной пар. Без этого конденсации не произойдет даже при большом излишке пара или при сильном охлаждении воздуха.

Итак, в результате конденсации водяного пара в воздухе появляются мельчайшие капельки воды. Если конденсация происходит вблизи земной поверхности, то образуется туман. Если же конденсация происходит на значительной высоте, то образуются облака.

Размеры капелек, из которых состоят туманы и облака, очень малы, их диаметр не превышает 0,01 миллиметра. Такие капельки легко держатся в воздухе даже слабыми восходящими воздушными потоками и не оседают на землю.

Следует отметить, что, достигая высоты, где температура воздуха ниже 0 градусов, облачные капельки замерзают не сразу, а могут длительное время находиться в переохлажденном состоянии, т. е. оставаться жидкими при температуре ниже точки замерзания. Установлено, что вода в природе может находиться в жидком состоянии даже при весьма низких температурах — до —30, —40 градусов. Однако это состояние воды сохраняется только до первого сильного толчка или до введения в нее кристалла льда. При этом переохлажденные капли воды немедленно кристаллизуются, превращаясь в лед.

При отрицательных температурах водяной пар, находящийся в воздухе, может превращаться не в капельки воды, а в ледяные кристаллы. Сросшиеся кристаллики льда образуют различные формы снежинок, а снежинки слипаются в хлопья снега.

Нетрудно заметить, что все снежинки, несмотря на их разнообразие, построены по типу шестигранников. Все снежные звездочки обязательно шестилучевые.

В ясные ночи, когда земная поверхность сильно охлаждается за счет излучения тепла, охлаждается и самый нижний, прилегающий к земле, слой воздуха. Водяной пар, находящийся в этом слое, конденсируется. Возникают низкие приземные туманы, которые называются радиационными. Они образуются чаще всего в местах, где скапливается ночью холодный воздух, в том числе над болотами, небольшими прудами, руслами речек. Высота радиационных туманов невелика — не более нескольких десятков метров. Возникают эти туманы обычно перед восходом Солнца, при спокойном воздухе. После восхода, когда земная поверхность нагревается, они довольно быстро рассеиваются.

Другой вид туманов возникает, когда на охлажденный участок земной поверхности натекает теплый влажный воздух. При этом нижние слои теплого воздуха охлаждаются при соприкосновении с холодной земной поверхностью, и водяной пар в них начинает конденсироваться. Такие туманы, носящие название адвективных, могут занимать большие площади и держаться при значительном ветре. Высота этих туманов может достигать нескольких сотен метров.

Каждый знает, как разнообразны бывают облака. Нередко они создают на небе причудливые картины. Но несмотря на все разнообразие и крайнюю изменчивость форм облаков, их делят всего на несколько видов, в зависимости от их внешней формы и высоты.

По внешнему виду облака делятся на три класса: кучевообразные (кучевые, мощные кучевые и кучево-дождевые), слоистообразные и волнистые, а по высоте — на четыре класса: облака верхнего яруса (выше 6 километров), среднего яруса (от 2 до 6 километров), нижнего яруса (ниже 2 километров) и мощные облака вертикального развития, которые распространяются но высоте на несколько ярусов (иногда от 1 до 8 километров).

Воздух в атмосфере находится в постоянном движении; воздушные потоки, по-разному насыщенные водяным паром, поднимаются вверх, опускаются вниз, перемещаются по горизонтали.

Над наиболее нагретыми участками земной поверхности температура воздуха повышается, более теплая его часть становится легче и, как бы всплывая, поднимается вверх. Возникает восходящий поток. На место поднимающегося теплого воздуха притекает более тяжелый холодный воздух. Соприкасаясь с нагретой земной поверхностью, он также нагревается и поднимается вверх. Попадая вверху в менее плотные слои, нагретый воздух расширяется и в связи с этим снова охлаждается. Это охлаждение объясняется расходом тепла на работу, затрачиваемую на расширение воздуха. В результате на некоторой высоте количество водяного пара в воздухе окажется больше предела насыщения, и водяной пар сконденсируется в мелкие водяные капельки. Возникает облако.

Нагревающийся различно в зависимости от характера земной поверхности воздух поднимается не сразу на большой площади. Поэтому и облака образуются не сплошь, а отдельными кучками в виде белых скоплений, похожих на вату или хлопок. Эти облака так и называются кучевыми. Образуются они обычно в теплое время года днем, ближе к полудню или после полудня, в часы наиболее сильного нагревания земной поверхности. В это время восходящие потоки воздуха достигают наибольшей интенсивности.

Кучевые облака образуются в среднем на высоте 800—1000 метров и распространяются вверх до двух километров. Если нагревание земной поверхности усиливается, то кучевые облака могут разрастись и распространиться вверх до трех-четырех километров. Возникают мощные кучевые облака.

Вершина мощного кучевого облака может достигнуть области низких температур, ниже 0 градусов, где переохлажденные капельки воды начнут замерзать и превращаться в ледяные кристаллы. В этом случае возникают так называемые кучеводождевые (грозовые) облака; ледяные кристаллы в таком облаке растут, слипаются в снежинки и под действием силы тяжести начинают опускаться вниз. Сильные восходящие потоки воздуха внутри облака снова поднимают снежинки вверх. Во время этого движения переохлажденные водяные капельки присоединяются к снежинкам. Снежинки увеличиваются, слипаются друг с другом и, наконец, достигают такого веса, что преодолевают сопротивление восходящего потока воздуха и падают вниз на землю. В теплое время года, попадая в более теплый воздух, эти снежинки тают и выпадают в виде капель воды. В холодное время они выпадают в виде крупного снега или белых непрозрачных зерен (так называемая крупа).

Из таких облаков выпадают сильные, но короткие дожди — ливни с крупными каплями или сильный ливневый снег с крупными хлопьями.

Летом, особенно в жаркую погоду, бывает и так, что в облаке образуются не крупинки, а целые куски льда. При падении они немного оттаивают и достигают поверхности земли в виде града. Наблюдался град величиной с куриное яйцо и больше. Такой град может принести большой вред сельскому хозяйству, выбивая посевы.

Кучевообразные облака могут образовываться в атмосфере и за счет вытеснения вверх более теплого влажного воздуха при вторжении под него более холодного воздуха.

Образование кучеводождевых облаков часто сопровождается грозами. При этом в облаках скапливаются большие количества положительного и отрицательного электричества.

Как это происходит?

Ледяные кристаллики в верхней части облака электризуются, причем более мелкие получают отрицательный заряд, а более крупные — положительный. Крупные кристаллы, опускаясь в нижнюю часть облака, тают и превращаются в капли воды. Эти капли при движении внутри облака под сильным действием восходящих и нисходящих потоков разбиваются, при этом более крупные части разбитых капель получают положительные заряды. В результате в грозовом облаке происходит разделение зарядов электричества на отрицательный (в верхней части облака) и положительный (в нижней части). Образование таких зарядов и приводит к тому, что между отдельными частями облака или между облаками и земной поверхностью происходят электрические разряды, наблюдаемые нами в виде молний.

Вскоре после яркой вспышки молнии мы слышим гром. Это — звуковые колебания воздуха. В том месте где проскакивает электрическая искра (в канале молнии), происходит сильное нагревание воздуха, доходящее до нескольких тысяч градусов; благодаря этому здесь возникает повышенное давление и ударная волна. Последняя и служит основной причиной звуковых колебаний воздуха — грома.

Исследования возникновения молнии, проведенные советскими учеными, в частности И. С. Сокольниковым, показали, что молния состоит из ряда последовательных разрядов. Сам процесс развития молнии имеет две стадии. Сначала возникает ведущий, так называемый лидерный, разряд, а затем главный разряд. Лидерный разряд идет от облака к земле со скоростью в 100—200 километров в секунду. Как только он достигнет земли, по проложенному им пути в обратном направлении, от земли к облаку, проходит главный, очень яркий разряд молнии, распространяющийся с огромной скоростью. Этот процесс может повторяться до 30—40 раз. Так как все это происходит в течение очень короткого времени, наш глаз не различает промежутка между разрядами, и все они сливаются в один разряд в виде молнии.

В природе иногда возникают шаровые молнии. Это — светящийся шар, диаметром 10—20 сантиметров; движется он со сравнительно небольшой скоростью. Шаровая молния может проникать внутрь здания через окна, дымоходы и т. д. Иногда такая молния уходит без всяких последствий, а иногда вызывает пожары и разрушения. Встречаясь с препятствиями, шаровая молния часто взрывается с оглушительным треском.

Вот как описывает газета «Правда» один из случаев появления шаровой молнии в Армении в июне 1959 г.

«Вечером 3 июня, когда над Ереваном разразилась сильная гроза, в квартире П. Атабекяна вдруг раздался страшный грохот. Пробив черепичную крышу и потолок, на кровать свалилась шаровая молния. Она достигала в поперечнике тридцати сантиметров. Запахло паленым: горело одеяло. Лопнули лампочки, вылетели пробки счетчика и перегорел телевизор, сгорела электропроводка и, как впоследствии выяснилось, испортился телефон. Покружившись по комнате, огненный шар проник через открытую дверь на кухню, а затем вылетел в окно. Шаровая молния ударилась во дворе о землю и взорвалась. Сила взрыва была так велика, что стоявший метрах в пятидесяти глинобитный домик рухнул. К счастью, никто не пострадал».

Природа шаровой молнии еще полностью не выяснена. Есть предположение, что такая молния представляет собой клубок сильно наэлектризованной смеси газов — азота, кислорода, водорода, озона и окислов азота.

Так как удары молнии могут причинить значительный ущерб, для защиты от них применяются известные всем громоотводы (вернее, «молниеотводы»), представляющие собой вертикальные металлические стержни, соединенные с надежно заземленным проводником.

Еще один вид кучевообразных облаков — перистокучевые (кучевообразные) облака. Это — облака верхнего яруса. Они образуются, когда водяной пар конденсируется на высоте более 6 километров. На высоте около 6 километров и выше царит холод; водяной пар, конденсируясь, переходит здесь не в капли воды, а в ледяные кристаллы; из них и состоят перистокучевые облака. Эти облака имеют незначительные размеры.

В верхнем ярусе образуются также перистые облака— такие облака напоминают по своему виду перья.

Слоистообразные облака отличаются тем, что образуют сплошную пелену, закрывающую весь небосвод или большую часть его. Возникают такие облака, когда более теплый воздух медленно натекает на массу более холодного. Такое натекание наблюдается часто в холодное время года. К слоистообразным облакам верхнего яруса относятся перистослоистые облака в виде тонкой, почти прозрачной пелены. Эти облака часто вызывают особые оптические явления в атмосфере — гало и венцы — светлые круги вокруг Солнца и Луны.

В среднем ярусе образуются высокослоистые облака, состоящие из смеси снежинок с мелкими переохлажденными каплями. Снежинки растут и выпадают из облаков в виде слабого снега. Высокослоистые облака закрывают серой пеленой все небо, но сквозь них мутным пятном просвечивают Солнце и Луна.

Ниже двух километров возникают также слоисто-дождевые облака, нижняя половина которых состоит из капелек воды, а верхняя — из снежинок. Такое разнородное внутреннее строение слоистодождевых облаков приводит к быстрому образованию осадков. В теплое время года это — обложные дожди, выпадающие на больших пространствах, а зимой — обложной снег. Эти облака имеют вид однообразной плотной серой пелены, сквозь которую не просвечивают ни Солнце, ни Луна.

Волнистые облака представляют собой расстилающийся слой, на котором видны валы и гряды, придающие облакам волнистый вид. Одной из основных причин образования волнистого вида облаков является перемещение друг относительно друга масс воздуха с разными плотностями. На поверхности соприкосновения этих масс воздуха образуются волны в силу того же закона, по которому образуются волны на поверхности воды при ветре. Этот процесс приводит к тому, что на гребне волны воздух несколько поднимается и охлаждается, что вызывает усиление конденсации водяного пара и уплотнение облачности. В долине волны, наоборот, воздух опускается и несколько нагревается. Это влечет за собой разрежение или полное рассеивание облачности. В результате облачность и принимает волнистый вид.

В зависимости от высоты образования волнистые облака делятся на слоистокучевые, образующиеся в слое до двух километров над землей, высококучевые, если они образуются в слое между 2 и 6 километрами, и перистокучевые волнистые, если они образуются выше 6 километров.

К классу волнистых облаков относятся также слоистые облака, покрывающие часто большие пространства ровной серой пеленой. Образуются они в самых нижних слоях атмосферы — на высотах порядка 100—300 метров. Эти облака состоят из очень мелких капелек воды. Иногда они представляют собой поднявшийся туман.

Все виды облаков, о которых мы говорили, образуются в нижнем слое атмосферы, не выше 10—12 километров в умеренных широтах и 16—18 километров — в экваториальной зоне. На высотах порядка 22—30 километров иногда образуются очень тонкие просвечивающие облака, носящие название перламутровых. Нередко они имеют яркую радужную окраску. Происхождение и структура их еще до конца не выяснены. Предполагается, что они состоят из переохлажденных водяных капель или кристаллов льда.

На очень больших высотах наблюдаются так называемые серебристые, или светящиеся, облака. Плотность их настолько мала, что они не ослабляют проходящий сквозь них свет звезд. Эти облака были открыты русским астрономом В. К. Цераским.

Поздним вечером, наблюдая небо, Цераский обратил внимание на необычайные облака. «Отличаясь видом от прочих,— писал он впоследствии,— они бросались в глаза прежде всего своим светом. Облака эти ярко блестели в ночном небе чистыми белыми серебристыми лучами, иногда с легким голубоватым отливом, принимая в непосредственной близости от горизонта золотистый оттенок. Бывали случаи, что от них становилось светло, стены зданий весьма заметно озарялись и неясно видимые предметы резко выступали».

Наблюдая эти облака, ученый пришел к выводу, что они находятся очень высоко. Это предположение впоследствии подтвердилось. Вместе с астрономом А. А. Белопольским Цераский организовал наблюдение за этими облаками из двух пунктов, находящихся на значительном расстоянии друг от друга. Определяя углы, под которыми эти облака были видны, и зная расстояние между точками наблюдения, они вычислили высоту серебристых облаков. Она оказалась равной 82 километрам.

С земли серебристые облака кажутся почти неподвижными, но в действительности они передвигаются с большой скоростью, достигающей часто более 100 метров в секунду.

Долгое время ученые не могли объяснить причину появления этих облаков. Высказывались предположения, что они состоят из вулканической пыли или из продуктов разрушения метеоритов. Однако это предположение не могло объяснить, почему серебристые облака держатся на такой большой высоте. Наиболее вероятная гипотеза происхождения этих облаков была выдвинута в 1951 году советскими учеными во главе с проф. И. А. Хвостиковым. По этой гипотезе серебристые облака— обычные облака, состоящие из ледяных кристалликов. Образуются они в слое атмосферы между 79 и 84 километрами. Температура этого слоя настолько низка, что в ней конденсируются даже ничтожные количества водяного пара, попадающие сюда. Ядрами конденсации в этом случае могут служить как космическая пыль, так и частицы морской соли, попадающей туда с поверхности земли.

Облачность играет большую роль в регулировании температуры в нижних слоях атмосферы. Облака отражают часть лучистой энергии Солнца, а также рассеивают солнечное излучение. Кроме того, облака, особенно сплошные и густые, поглощают значительную часть излучения земной поверхности и, таким образом, уменьшают охлаждение ночью. Вот почему в облачную погоду температура изменяется не так резко, как в ясную.

Сплошные облака, закрывая землю, затрудняют полеты на больших высотах. Летя сквозь облака, самолет может обледенеть. При температуре ниже 0 градусов переохлажденные капельки воды, сталкиваясь с самолетом, мгновенно кристаллизуются и намерзают на его поверхности. В мощных кучевых и кучеводождевых облаках восходящие и нисходящие потоки воздуха сильно «болтают» самолет. Опасны для самолета и грозовые явления в облаках.

Все это заставляет тщательно изучать строение и жизнь облаков.

Помимо образования туманов и облаков в атмосфере, конденсация водяного пара происходит на земной поверхности в виде росы, инея, изморози, гололеда.

Роса — это довольно крупные капли воды, появляющиеся на стеблях и листьях травы, на лежащих на земле предметах при сильном охлаждении приземного слоя воздуха. Водяной пар осаждается сначала в виде мелких капелек, которые затем сливаются в более крупные. Роса выпадает чаще всего в ясные ночи, при небольшом ветре. Ветер приносит к охлажденным участкам земли все новые потоки влажного воздуха.

Смачивая листья, роса играет не малую роль в жизни растений.

В холодное время года водяной пар превращается уже не в капельки воды в виде росы, а в мелкие кристаллики льда; образуется иней.

Иногда при сильных туманах и морозах водяной пар в приземном слое воздуха превращается в ледяные кристаллики, которые, осаждаясь на тонких ветвях и хвое деревьев, образуют длинные осыпающиеся нити — изморозь. Она часто образуется также на телеграфных столбах и проводах, на стенах домов, на мостовой.

Разбирая процесс образования облаков, мы уже по-знакомились с тем, как из облаков выпадают осадки. Рассмотрим этот вопрос несколько подробнее.

Атмосферными осадками или просто осадками называются выпадающие из облаков частицы воды в жидком или твердом состоянии. Чтобы выпасть из облака, капли воды или кристаллы льда (снежинки) должны достичь такого веса, чтобы скорость их падения была больше, чем скорость восходящих движений воздуха.

Рост капель в облаках происходит по двум причинам. Одна из них — это осаждение молекул водяного пара на поверхности облачных капель, т. е. продолжение процесса конденсации водяного пара. Вторая — это слияние отдельных капелек друг с другом при их столкновениях (так называемая коагуляция). Мелкие капли растут вначале очень быстро (за несколько секунд их диаметр может увеличиться в 2—3 раза), но с увеличением размера рост их замедляется. Для образования крупных дождевых капель в облаках требуется уже несколько часов.

Укрупнение капель за счет их столкновений требует слияния очень большого количества мелких капель. Учитывая, что диаметр облачных капель обычно не превышает 0,01 миллиметра, подсчитано, что для образования крупной дождевой капли диаметром в один миллиметр требуется не менее миллиона мелких облачных капель.

В облаках, состоящих из ледяных кристаллов (снежинок), условия для выпадения осадков более благоприятны. Ледяные частицы и замерзшие капли растут в размерах быстрее, чем водяные капли, и при столкновениях превращаются в снежные хлопья с диаметром в несколько сантиметров. Объясняется это тем, что упругость водяного пара над льдом меньше, чем над поверхностью воды, и рост ледяных кристаллов может начаться при значительно меньшей влажности воздуха. Все это приводит к тому, что если облако состоит из снежинок, то даже при небольших его размерах из него уже могут выпадать осадки в виде снега.

Особенно же благоприятные условия для выпадения осадков наблюдаются в смешанных облаках, которые состоят в верхней части из ледяных кристаллов, а в нижней — из переохлажденных облачных капель. Как уже говорилось, упругость водяного пара над поверхностью частичек льда всегда меньше, чем над водой, поэтому при попадании ледяных кристаллов в среду, состоящую из переохлажденных водяных капель, начинается переход молекул водяного пара с капель на кристаллы. В результате ледяные кристаллы и снежинки, опускаясь вниз, быстро увеличиваются в размерах. Поэтому из таких облаков, как правило, всегда выпадают осадки.

Осадки измеряются толщиной слоя воды, который мог бы образоваться, если бы дождь не впитывался в почву, а оставался на поверхности земли. Эта толщина измеряется в миллиметрах при помощи специального прибора, называемого дождемером. Количество выпавшего снега измеряется также в миллиметрах — по толщине слоя воды, который получается, когда весь выпавший снег растает. Интенсивность осадков, т. е. количество их, выпадающее в единицу времени, измеряется в миллиметрах в минуту; она может достигать 10 и более миллиметров в минуту. Это, однако, редкие случаи, и наблюдаются они преимущественно в жарких странах.

Вблизи экватора, где влажность воздуха особенно велика, количество осадков достигает двух метров, а в отдельных областях даже 3—4 метров в год. Наибольшее количество осадков выпадает на Гавайских островах ( в Тихом океане) и в Индии (местечко Черрапунджа). В этих местах в среднем за год слой дождевой воды достигает 12, а в отдельные годы даже 15 метров. Насколько это велико, можно видеть из такого примера— если в течение года количество выпавших дождей составляет 12 метров, то это означает, что на каждый гектар выпадает более 10 000 000 ведер воды. В то же время на земном шаре есть области, где осадки выпадают очень редко, иногда с перерывами в несколько лет. Таковы пустыни в Чили и Перу (Южная Америка) и пустыня Сахара (Африка).

Ливни наибольшей силы бывают в тропиках и в экваториальной зоне. Так, на Гавайских островах был ливень, когда каждую минуту выпадал 21 миллиметр осадков. В умеренных широтах интенсивность осадков значительно слабее.

В истории описано много больших, катастрофических наводнений, вызванных ливнями.

Кто не знает библейской сказки о «всемирном потопе», от которого будто бы во всем мире спаслись всего несколько человек. Это, конечно, выдумка. Но оказывается, основанием для этой выдумки послужил действительный случай сильнейшего наводнения на больших реках — Тигре и Евфрате в Месопотамии (территория современного Ирака). Наводнение произошло около 5600 лет назад. При нем погибло и пострадало очень много людей. Это наводнение и было позднее описано в библии, но было сильно искажено, неправдоподобно преувеличено.

Сильнейшие наводнения от ливней произошли в последние годы в некоторых странах Европы и Америки.

Так, в ноябре 1951 года катастрофическое наводнение было в Северной Италии.

«Уже несколько дней,— писала корреспондент «Правды» О. Чечеткина,— в Альпах и в провинции Лигурия на севере Италии идут сильные грозы с проливными дождями. Все реки и речушки, обычно мелководные, сейчас превратились в бурные потоки и вышли из берегов. Река По, самая большая из итальянских рек, прорвала в нескольких местах плотины и залила прилегающие к ней равнины, превратив их в огромные водные пространства. Поток воды с огромной силой несется по равнине, смывая крестьянские дома, сады, виноградники. Вода залила сотни деревень, хуторов, города Ровиго, Мантуя, Падуя, Комо окружены водой. Разлившаяся По подошла к самым стенам Феррары. Сотни гектаров недавно засеянных полей полностью находятся под водой.

Наводнение причинило огромные бедствия итальянскому народу. В одной только провинции Ровиго от наводнения пострадало 25 тысяч семей, что составляет в общей сложности около двухсот тысяч человек. В большинстве— это батраки и бедные крестьяне.

Ветхие крестьянские дома не выдерживают напора воды и рушатся. Сотни семей потеряли все — дом, скот, имущество. Почти в каждом поселке имеются человеческие жертвы; тысячи людей с малолетними детьми и стариками отрезаны в отдельных домах, вокруг которых бушует вода. Уже четверо суток сидят они на крышах без пищи, без теплой одежды, под страхом смерти».

Помощь населению затопленных районов организовали итальянские коммунисты. Они возглавили спасательные бригады, создали комитеты помощи, пункты по сбору средств пострадавшим. Большое количество продовольствия послал в те дни в Италию Советский Союз.

Очень часты сильные наводнения на американской реке Миссисипи и ее притоке Миссури. В июле 1951 года в долине реки Миссури в течение многих дней шли проливные дожди. Уровень воды в Миссури и Миссисипи поднялся необыкновенно высоко. Во многих местах Миссури разлилась в ширину до восьми километров. Вода размыла обветшалые плотины и хлынула на города и поселки. Наводнение охватило территорию трех штатов. В двух больших городах вода затопила все фабрики, заводы, жилые дома.

Прошло меньше года, и в США разразилось еще более катастрофическое наводнение. Оно охватило огромную территорию. Почти треть территории Соединенных Штатов Америки была покрыта водой. Больше всех пострадала снова долина реки Миссури, где лишилось крова более 100 тысяч человек.

«Наводнение 1952 г.,— писала американская газета «Дейли уоркер»,— является десятым за десять лет... Это дело рук человека... Те средства, которые правительство расходует на одну чудовищную атомную бомбу или на пару гигантских линкоров, можно было бы использовать для осуществления мероприятий по борьбе с наводнениями, обеспечить район дешевой энергией и спасти людей от гибели».

Сильные наводнения наблюдались в различных странах в 1959 году. Так, по сообщению токийского радио, в северной части самого южного острова Японии — Кюсю и в обширном районе Канто (центральная часть главного острова Хонсю) в июле 1959 года прошли сильные ливни, что вызвало разливы больших и особенно малых рек.

В японской печати отмечается, что в последние годы ливни и вызванные ими наводнения стали настоящим бедствием для населения многих районов страны. По данным статистики ущерб, причиняемый наводнениями, ежегодно достигает в среднем 240 миллиардов иен. «Другими словами,— заявил обозреватель токийского радио,— 3,1 процента национального дохода уносится водой».

Девятое в 1959 году наводнение пережила Аргентина. Три дня — с 20 по 22 июля — здесь шли непрерывные дожди. Много населенных пунктов было залито водой. Из столицы, Буэнос-Айреса и его пригородов, было эвакуировано сто тысяч человек, пострадавших от наводнения.

Температура Воздуха

Выясним прежде всего, что такое температура. Из физики мы знаем, что температура — это величина, характеризующая тепловое состояние тела. Качественной мерой температуры является наше ощущение тепла; количественным измерителем, правда, в некоторой степени произвольным, может служить любой термометр. От чего же зависит температура? Как известно, все окружающие нас тела состоят из мельчайших частиц вещества — атомов и молекул. Эти частицы никогда не находятся в покое. Характер их движения различен у твердых, жидких и газообразных тел. От скорости движения атомов и молекул и зависит температура тела.

В газах частицы не связаны друг с другом; ом носятся в самых различных направлениях и на «каждом шагу» сталкиваются друг с другом, меняют свое направление, разлетаются, снова сталкиваются. Скорости движения у отдельных частиц газа могут несколько отличаться, но каждой температуре газа соответствует какая-то определенная средняя скорость движения его частиц. Чем больше средняя скорость движения частиц, тем выше температура газа.

Таким образом, можно считать, что температура газа является непосредственной мерой средней скорости движения его молекул.

Все сказанное выше позволяет объяснить и возможность возникновения очень высоких температур. Повышая температуру газа, мы повышаем скорость движения его частиц, а поскольку пределы повышения скорости очень велики, то и температура может увеличиваться до очень больших значений.

С другой стороны, при охлаждении газа можно достичь такой температуры, при которой скорость теплового движения молекул упадет до нуля. Это наступает при температуре в 273,23 градуса ниже обычного нуля.

Обычно для измерения температуры служит несложный прибор — термометр. Это — стеклянная трубка с небольшим расширением на конце, наполненная ртутью или подкрашенным спиртом. При нагревании жидкость в трубке расширяется и поднимается вверх по трубке. Если трубку наложить на шкалу (линейку с делениями), то можно, измерять температуру в градусах. Температуру тающего льда условились принимать за нуль градусов, а температуру кипящей воды— за 100 градусов. Шкала, рассчитанная таким образом (разделенная на 100 делений от 0 до 100), называется шкалой Цельсия.

Основным источником тепла на Земле служит Солнце. Подсчитано, что на каждый квадратный метр земной поверхности ежеминутно падает в среднем 14—18 больших калорий тепла.

Количество тепла, получаемого Землей от Солнца, поистине грандиозно. За одни сутки поверхность земного шара получает от Солнца больше тепла, чем могло бы дать все топливо, сожженное человечеством за 1000 лет (при нынешнем годовом расходе).

Солнечная энергия является источником всей жизни на Земле. В той или иной форме мы постоянно используем энергию Солнца. Например, энергия каменного угля — это, по существу, солнечная энергия. Ведь уголь — это залежи похороненных в земных пластах древних растений, росших на Земле миллионы лет назад. А растения могут жить и развиваться только под лучами Солнца.

Энергия, излучаемая Солнцем в мировое пространство, огромна. Но на Землю, находящуюся от Солнца на расстоянии около 150 миллионов километров, падает лишь незначительная часть этой энергии. Установлено, что количество лучистой энергии в калориях, приходящее в одну минуту на один квадратный сантиметр поверхности, расположенной перпендикулярно солнечным лучам на границе атмосферы, равно 1,97 калории. Эта величина носит название солнечной постоянной.

Что же происходит на Земле с энергией, излучаемой Солнцем? Как при этом нагревается земная атмосфера? Длительными наблюдениями и исследованиями установлено, что поступающее на Землю тепло солнечных лучей распределяется на несколько тепловых потоков. 42% тепла отражается от Земли и уходит назад, в мировое пространство, в виде отраженных солнечных лучей. Из них 38% отражается атмосферой и 4% земной поверхностью. Остальные 58% поглощаются: 14%—атмосферой и 44%—почвой. Все полученное тепло почва отдает обратно, причем 5,6% тратится на нагревание воздуха, а 18,4%—на испарение влаги. В результате атмосфера, кроме 14% тепла, которые она поглотила в виде прямых солнечных лучей, получает еще 5,6% за счет нагревания от земной поверхности и 18,4% за счет превращения в жидкость испарившейся воды (т. е. за счет выделения скрытой теплоты при конденсации водяного пара).

Всем известно, что температура воздуха у поверхности земли не остается постоянной. Она колеблется как в течение суток, так и в течение года. Чем это объясняется?

Наша планета, Земля, обращается вокруг Солнца. Один полный оборот она совершает за один год. При этом в различное время года разные места земного шара освещаются солнечными лучами неодинаково. Полгода к Солнцу наклонено северное полушарие Земли; в это время оно получает больше тепла, чем южное, и в северном полушарии стоит лето, а в южном — зима. В следующие полгода к Солнцу наклонено южное полушарие, которое теперь получает больше тепла, чем северное, и в этот период в северном полушарии стоит зима, а в южном — лето.

Земля шарообразна. Поэтому количество тепла, поступающее от Солнца, различно для разных мест на земном шаре. В зоне экватора солнечные лучи падают на земную поверхность почти отвесно. Ближе к полюсам они падают под меньшим углом, как бы скользя по поверхности земли. Ясно, что одно и то же количество солнечных лучей распределяется по большей поверхности, падая под углом, чем при отвесном падении. Этим и объясняется жаркий климат в экваториальных областях Земли и холодный — в полярных.

Земной шар вращается вокруг своей оси. В течение суток одно и то же место на земном шаре находится в разных положениях относительно Солнца. В полдень Солнце стоит у нас почти над головой, утром и вечером лежит у самого горизонта, а ночью уходит под горизонт.

Утром и вечером солнечным лучам приходится проходить гораздо больший путь в атмосфере, чем в полдень. Подсчитано, что длина пути солнечных лучей сквозь атмосферу при восходе и заходе Солнца в 35 раз длиннее, чем днем, когда Солнце стоит прямо над головой.

Так как часть энергии Солнца поглощается земной атмосферой, понятно, что утром и вечером будет холоднее, чем в полдень.

На температуру воздуха в разных местах земного шара влияет и то обстоятельство, что поглощение тепла земной поверхностью зависит от ее характера. Неровная поверхность нагревается сильнее, чем гладкая. Суша нагревается скорее, чем вода, и быстрее охлаждается. Вспаханное поле нагревается сильнее, чем покрытый травой луг, песок нагревается сильнее, чем почва, покрытая кустарником.

Кроме того, температура воздуха в разных местах земного шара в большой степени определяется приносом тепла морскими и воздушными течениями. Так, известное теплое морское течение Гольфстрим, выходящее из Мексиканского залива с температурой воды выше +28 градусов, приносит в северные моря такой запас тепла, что, например, Баренцево море летом очищается от льда до Шпицбергена. Благодаря этому течению климат северо-западной Европы гораздо теплее, чем в любом другом месте земного шара под теми же широтами. Так, у берегов Норвегии на острове Скомвэр средняя температура воздуха в январе равна +1,1 градуса. В то же время в СССР в Усть-Цильме на реке Печоре, на той же широте, средняя температура января равна —18 градусов.

Воздушные течения, постоянно существующие в атмосфере, также сильно влияют на температуру воздуха. В отдельных случаях проникающие с севера далеко на юг массы холодного воздуха из Арктики резко понижают температуру в центральных и южных областях Европейской части Советского Союза. Например, в январе 1950 года холодный воздух, распространившийся из Арктики, понизил температуру воздуха в Ростове до 32 и в Сочи до 16 градусов мороза. Иногда зимой в Европейской части СССР наступает, наоборот, резкое потепление; оно вызывается притоком теплых масс воздуха из района Средиземного моря.

В результате всего этого температура воздуха на земном шаре распределяется не строго по широтам.

Что касается пределов, которых может достигать температура воздуха, то их еще нельзя считать точно установленными. Так, до недавнего времени «полюсом холода» считали город Верхоянск в Якутской АССР, где была зарегистрирована температура в —68 градусов (по Цельсию). Однако в дальнейшем было обнаружено, что в той же Якутской АССР в поселке Оймякон наблюдались температуры до —70—71 градуса. А теперь наблюдениями советских метеорологов на станции «Восток» в Антарктиде отмечено понижение температуры в августе 1959 года до 87 градусов мороза. Наиболее высокая температура, +58 градусов, наблюдалась в Африке, близ города Триполи (Ливан) и в Южном Иране. Температура воздуха +56 градусов отмечалась в Долине Смерти (США, штат Калифорния).

Отметим в связи с этим одну очень распространенную ошибку. Вы часто слышите, а может быть, и говорите сами: «сегодня на солнце температура такая-то». Однако измерять температуру «на солнце», т. е. помещать термометр прямо под солнечные лучи, нельзя. В этом случае термометр будет нагреваться сам и покажет температуру не воздуха, а ртути и стекла термометра.

Это можно легко проверить. Поставьте под солнечные лучи разные термометры, и они покажут вам разную температуру, характерную для сорта стекла, из которого сделаны трубки термометра, и величины каждого термометра.

Поэтому температуру воздуха всегда измеряют в тени.

Измерения температуры воздуха на разных высотах показали, что на каждые 100 метров подъема температура понижается в среднем на 0,6 градуса. Однако эта закономерность не распространяется на всю толщу атмосферы. В умеренных широтах непрерывное понижение температуры воздуха с высотой наблюдается только примерно до 11 —12 километров. На экваторе эта высота возрастает до 15—18, а на полюсах понижается до 8—9. Выше этих границ температура воздуха становится почти постоянной до высоты 35 километров — здесь держится мороз в 55 градусов. Дальше температура воздуха начинает повышаться и к 50 километрам достигает приблизительно +70 градусов. Эта температура сохраняется до высоты около 65 километров, после чего снова падает. Затем следует новое повышение температуры, и на высоте 120 километров она может достигать +100 градусов.

Чем все это объясняется?

Повышение температуры на высотах между 35— 50 километрами объясняется присутствием в этом слое озона; он, как мы уже говорили, поглощает ультрафиолетовое излучение Солнца, которое и вызывает увеличение температуры в этом слое. Следующее повышение температуры —- в слое между 90 и 120 километрами,— как предполагают, объясняется так называемой ионизацией воздуха, о которой мы будем говорить ниже.

Повышение температуры воздуха на высоте 40— 50 километров было подтверждено исследованиями советского ученого проф. В. И. Виткевича. Он изучал распространение звука при взрыве артиллерийских складов близ Москвы в 1920 году. Проверив слышимость взрыва в различных пунктах вокруг Москвы, он обнаружил, что взрывы были слышны в двух зонах — одна радиусом в 60 километров вокруг Москвы, а другая начиная со 160 километров от Москвы. Между ними находилась зона молчания, в которой звуки взрывов совсем не были слышны. Было установлено, что звуковые колебания, возникавшие при взрывах под Москвой, отражались от слоя атмосферы, расположенного на высоте 40— 50 километров, описывали дугу и возвращались на землю.

Из теории распространения звука известно, что такое отражение звука в атмосфере может возникнуть лишь при одном условии: слой атмосферы, отразивший звук, должен быть более нагрет, чем нижние слои. Его температура должна быть примерно +40+50 градусов.

Существование в атмосфере слоев, в которых сохраняется одна и та же температура воздуха (значительно ниже 0 градусов), объясняется так называемым лучистым равновесием.

Вот что это такое. Мы уже знаем, что воздух получает от земной поверхности тепло и излучает его во все стороны. Если какой-либо объем воздуха поглощает тепла больше, чем излучает, то воздух нагревается, если меньше — охлаждается. Но если излучаемая и поглощаемая энергия оказываются равными, то температура в данном объеме воздуха становится устойчивой, или, как принято называть, равновесной. Этим и объясняется сохранение постоянной температуры по высоте в некоторых слоях атмосферы. Такие слои называются слоями изотермии («изос» — равный, «терме» — теплота)

Из Чего Состоит Атмосфера Земли

Что такое воздух? Из чего он состоит?

В древности воздух считали одним из элементов, т. е. тех простых веществ, из которых состоят все окружающие нас тела. Древнегреческий ученый Анаксимен даже учил, что из воздуха создан весь мир. Только в XVIII веке было установлено, что атмосферный воздух— это довольно сложная смесь различных газообразных веществ.

В основном воздух состоит из азота, кислорода и аргона. Больше всего в воздухе азота; его содержится (по объему) 78,08%, а затем идет кислород — 20,95% и аргон — 0,93%. На долю этих трех газов приходится более 99,9% всего объема воздуха. Оставшуюся часть составляют углекислый газ, водород, неон, гелий, озон, криптон и ксенон. Помимо этого, в атмосфере всегда присутствует водяной пар. Количество его непостоянно и колеблется от 0 до 4% по объему. Водяной пар играет большую роль в атмосферных явлениях, так как его сгущение дает начало облакам и осадкам. Превращения водяного пара сопровождаются поглощением или выделением больших количеств тепла.

Кроме того, в воздухе всегда находятся различные примеси в виде твердых и жидких частичек.

Вначале определение состава воздуха производилось лишь у земной поверхности и на небольшой высоте. Каков состав воздуха высоко над землей, ученые не знали, но предполагали, что газы располагаются в атмосфере в зависимости от их веса или плотности. Думали, что более тяжелые — азот и кислород — лежат ниже, а более легкие — гелий и водород — выше.

Одно из первых исследований состава воздуха на большой высоте было проведено в нашей стране при полете стратостата «СССР-1» 30 сентября 1933 года. Стратостат представлял собой огромный воздушный, шар, к которому была подвешена герметически закрытая кабина. В кабине поместились три воздухоплавателя — Прокофьев, Годунов и Бирнбаум. Стратостат поднялся на рекордную для того времени высоту в 19 километров.

Во время полета были взяты пробы воздуха на различных высотах. Анализ полученного воздуха дал неожиданные результаты. Оказалось, что процентное отношение газов, входящих в состав воздуха, до высоты 18 километров не меняется; оно остается таким же, как и у земной поверхности.

Позднее в разных местах земного шара ученые неоднократно брали пробы воздуха с этих и других высот и убедились в том, что состав воздуха действительно остается неизменным до очень больших высот.

Достоверные сведения о составе более высоких слоев атмосферы получают с помощью ракет. Метеорологи запускают в атмосферу ракеты, приспособленные для взятия проб воздуха (и для других наблюдений). Теперь ракеты поднимаются уже на сотни километров над землей. В феврале 1958 года мощная советская одноступенчатая ракета с научной аппаратурой, общим весом 1520 килограммов, поднялась на высоту 473 километра.

Ракетные исследования показали, что и на очень больших высотах состав воздуха почти не изменяется. Только начиная с 85 километров в нем несколько понижается доля наиболее тяжелого газа аргона, по сравнению с долей кислорода и азота.

О составе воздуха на больших высотах мы узнаем также при помощи других, косвенных способов, например с помощью особого способа исследования — спектрального анализа.

В XVII веке великий английский ученый Ньютон открыл, что белый свет — это свет сложный. Поставив на пути солнечных лучей стеклянную призму, он увидел необычайную картину.- пучок белых лучей, пройдя через призму, превратился в радужную полоску. Края ее были красного и фиолетового цветов. Между ними можно было выделить оранжевый, желтый, зеленый, голубой и синий цвета.

Эта многоцветная полоса получила название спектра. Кстати, для запоминания порядка расположения цветов в спектре можно использовать фразу: «Каждый охотник желает знать, где сидит фазан». Нетрудно видеть, что каждое слово этой фразы начинается с той же буквы, что, и название соответствующего цвета.

Ньютон обнаружил только часть спектра. Позднее за фиолетовыми и красными лучами были найдены другие, не видимые простым глазом. Лучи, которые следуют после фиолетовых, были названы ультрафиолетовыми, а лучи, расположенные за красными,— инфракрасными.

Дальнейшие исследования спектров привели ученых к интересному и важному открытию. Оказалось, что спектр, получающийся от свечения раскаленных твердых тел, отличается от спектра, который дают раскаленные светящиеся газы или пары. Спектр света, идущего от раскаленных твердых тел,— сплошной, он похож на радугу. А спектр света раскаленных газов (паров) состоит из отдельных тонких цветных линий на темном фоне, причем для каждого газообразного вещества расположение этих линий различно. Например, спектр паров натрия дает одну желтую линию, а водород четыре, из которых одна красная, одна синяя и две фиолетовые. Такие спектры спутать трудно!

Это было открытие большой важности. Изучая спектры различных веществ, ученые стали узнавать их химический состав.

При тщательном исследовании солнечного спектра выяснилось, что в нем на фоне радужной полоски заметно еще много тонких темных линий. Ученые поняли, что эти темные линии появляются не случайно, что-то задерживает часть световых лучей, не пропускает их.

Где же потерялись, например, красные лучи, если в красной части спектра мы находим много темных линий?

Оказалось, что если на пути красных лучей встречается вещество, которое само испускает такие же красные лучи, то оно задерживает, поглощает их, и в спектре мы видим темные линии.

Подобные спектры называют спектрами поглощения, а сами линии — линиями поглощения.

Изучение спектров поглощения позволило определить химический состав Солнца и звезд: темные линии поглощения рассказывают ученым о том, какие химические элементы находятся на пути следования лучей света — во внешних оболочках Солнца и звезд.

Таким же путем исследуется и состав высоких слоев атмосферы.

Новый метод исследования и был назван спектральным анализом. Честь его создания принадлежит немецким ученым Кирхгофу и Бунзену.

В высоких слоях атмосферы — от 100 до 1100 километров над землей — временами наблюдается интересное природное явление — полярное сияние. Полярное сияние — это свечение разреженного воздуха. Такое свечение возбуждается электрически заряженными частицами, поток которых идет от Солнца. Частицы, выбрасываемые из недр Солнца, с огромной скоростью влетают в земную атмосферу и вызывают полярные сияния. Исследование спектров полярных сияний показало, что и на тех высотах, где происходит это интересное природное явление,— воздух в основном состоит из азота и кислорода.

Чем же объяснить постоянство состава атмосферы?

Объясняется это, надо думать, только одним — тем, что воздух все время перемешивается. Воздушный океан никогда не знает покоя.

Доказательством того, что газы в атмосфере перемешиваются, может служить, в частности, и присутствие на большой высоте натрия, который попадает в атмосферу при испарении воды океанов и морей. В 1936 году советскими учеными этот химический элемент был обнаружен на высоте 82 километров. Важной составной частью воздуха является водяной пар. Поступает он в атмосферу за счет испарения воды с поверхностей морей и океанов, озер и рек, влажной почвы и растений.

В отличие от остальных составных частей воздуха, водяной пар в атмосфере может переходить в жидкое или твердое состояние. Об этих превращениях водяного пара в атмосфере мы расскажем дальше. А сейчас отметим только, что количество водяного пара с высотой очень быстро убывает. Почти вся вода сосредоточена в нижнем слое атмосферы. Исследования показали, что в самых верхних слоях атмосферы водяной пар отсутствует.

Особый интерес представляет газ озон. «Озон» значит по-гречески «сильно пахнущий». Резкий запах озона обнаруживается у поверхности земли при грозовых разрядах. Озон — это видоизменение атмосферного кислорода. В молекулах атмосферного кислорода содержится по два атома, а молекула озона состоит из трех атомов кислорода. Озон образуется под действием ультрафиолетового излучения Солнца (главным образом на высоте от 5 до 50 километров). При этом молекулы кислорода (О2) распадаются на атомы (О) и затем отдельные атомы присоединяются к молекулам (О2) и образуют трехатомные молекулы озона (Оз). В очень небольших количествах озон образуется и в нижних слоях атмосферы, где при грозовых разрядах также происходит распад и восстановление молекул кислорода, но количество его здесь не постоянно и очень мало. На больших высотах, где образование озона происходит под действием непрерывного ультрафиолетового излучения Солнца, его количество увеличивается. Оно достигает максимума на высоте 20—25 километров и делается практически незаметным на высоте 55—60 километров.

Общее количество озона в атмосфере невелико. Если бы можно было собрать его в один слой при нормальном атмосферном давлении и температуре 0°, то толщина этого слоя составила бы всего 2—3 миллиметра.

Несмотря на столь малое количество, озон играет очень большую роль в регулировании температуры в атмосфере и для жизни на Земле. Дело в том, что он очень сильно поглощает ультрафиолетовое излучение Солнца. Благодаря озону ультрафиолетовые лучи Солнца попадают на земную поверхность в ничтожном количестве, а эти лучи оказывают сильное влияние на живые организмы. В умеренных количествах они вызывают пигментацию кожи человека (загар) и убивают некоторые виды бактерий, а когда их много, то они задерживают рост растений и оказываются вредными для живых организмов.

Если бы озон вдруг исчез из атмосферы, жизнь в современных формах на Земле не могла бы существовать, так как лучи Солнца совершенно изменили бы все биологические процессы.

Кроме названных выше газов, в атмосфере, как уже упоминалось, всегда имеется большое количество примесей в виде мельчайших твердых и жидких частичек, как бы плавающих в воздухе. Чаще они так малы, что простым глазом их не видно. Более крупные частицы мы видим, например, в луче солнечного света, проникающего через небольшие отверстия в темную комнату. Эти частички по своему происхождению весьма разнообразны. Они рождаются повсюду. Разрушаются и выветриваются скалы и почва, тучи пыли поднимаются к небу. Над широкими просторами морей носятся бесчисленные частички морской соли. В атмосфере городов всегда находится много бактерий (в горах и над океанами их значительно меньше). Сильно засоряют атмосферу частицы дыма при сжигания угля и нефти в промышленных районах. В промышленных центрах Англии, сжигающей в год около 180 миллионов тонн угля, ежегодно оседает на каждый квадратный метр поверхности около 1,2—1,4 килограмма сажи и пыли. В довоенные годы убыток, приносимый дымом в одном только Лондоне (расходы на усиленное освещение, порча одежды, зданий и пр.), оценивался в 77 миллионов рублей в год.

При извержении вулканов количество пыли и пепла бывает так велико, что затмевает солнечный свет. Так было, например, в 1883 году при извержении вулкана Кракатау в Индонезии. Вулкан выбросил в воздух огромное количество пепла и пара. Пепел поднялся на высоту до 32 километров, сильно засорив атмосферу.

Пыль поступает в атмосферу также из межпланетного пространства и от разрушения попадающих в атмосферу метеорных тел. Это — так называемая космическая и метеорная пыль.

Любопытно отметить, что, хотя пыли в атмосфере относительно меньше над морями и океанами, чем над сушей, сами моря и океаны также являются поставщиками твердых частиц в атмосферу. Происходит это потому, что при волнении на море ветер поднимает в воздух мелкие брызги и пену морских волн. Водяные капельки при этом испаряются, оставляя в воздухе громадное количество мельчайших частиц морской соли.

Понятно, что пыли больше всего у земной поверхности. Чем выше, тем пыли меньше. Подсчет показывает, что в среднем число пылинок в одном кубическом метре воздуха на высоте от 100 до 6000 метров уменьшается в среднем с 45 000 до 20.

Некоторые частицы атмосферной пыли оказывают влияние на погоду. Они играют роль ядер, на которые осаждаются молекулы водяного пара, образуя облака и туманы. Такие частицы называются ядрами конденсации. Лучше всего конденсируются молекулы водяного пара на частицах, попадающих в воздух при сгорании угля, гниении органических веществ и т. д.

Об Атмосфере

Однажды кто-то заметил, что "ученый хочет объяснить, а все остальное человечество хочет понять". Это замечание предлагалось даже считать простейшим определением научного подхода к природе. Но если в качестве общего для всех наук такое определение нельзя считать ни вполне удачным, ни достаточно полным, то к метеорологии оно подходит довольно хорошо. Метеорологи действительно преисполнены желания объяснить природу земной атмосферы и непрерывных ее изменений. Остальные же люди на Земле пользуются этими объяснениями в повседневной деятельности.

На протяжении тысячелетий люди полагали, что атмосфера, или, точнее, воздух,— единое и простейшее вещество. Оно считалось одним из немногих первичных веществ, именовавшихся элементами. Считалось, что вместе с огнем, водой и землей воздух образует все другие вещества в природе. Но благодаря успехам физики мы теперь знаем, что воздух представляет собой смесь газов, состоящую не только из отдельных химических элементов, но и из их соединений. Кроме того, в воздухе находится во взвешенном состоянии много различных твердых и жидких частиц. К их числу относятся, например, капли воды, водяной пар и кристаллы льда, которые могут одновременно содержаться, скажем, в одном и том же облаке. Газы, составляющие атмосферу, могут иметь и естественное происхождение, и искусственное — попадать в атмосферу при сжигании различных видов, ископаемого топлива. Наконец, в атмосферу выносится пыль при извержении вулканов, проникает пыль -из космоса.

Вещества эти поступают в атмосферу разными путями. Прежде чем приобрести современные свои свойства и состав, земная атмосфера прошла несколько промежуточных стадий развития. Метеорологи располагают убедительными доказательствами того, что древняя атмосфера весьма сильно отличалась от современной и что состав ее, начиная с самого ее возникновения, постепенно изменялся. Человечество непрерывно подвергается воздействию погодных условий. Лед и снег, шквалы, жара и мороз, солнечная радиация, приходящая на земную поверхность, в каждый момент нашего существования создают для нас различные дискомфортные ситуации или, наоборот, весьма благоприятные метеорологические условия. Метеорология в наши дни исследует причины возникновения различных изменений этих условий.

Происхождение и развитие атмосферы

Современная земная атмосфера представляет собой конечный результат эволюции, начавшейся на пустынной первичной Земле сразу после ее возникновения и продолжавшейся на протяжении 3—4 миллиардов лет. На таком долгом и негладком пути развития Земли ее атмосфера многократно изменяла свой состав и свойства.

Само слово "атмосфера"—древнегреческое: ,"атмос" означает пар. а "сфайра" — сфера. Однако теперь мы уже далеко ушли от такого примитивного определения и можем — притом, как нам кажется, с большой точностью — описать ту реальную атмосферу, которую Земля имела на ранних этапах развития. Мы обладаем и вполне удовлетворительным объяснением тех изменений и эволюционных процессов, которые воздействовали на атмосферу с момента ее образования и в конце концов привели ее к современному состоянию.

Атмосфера и жизнь

Существует несколько весьма разумных гипотез относительно состава и свойств первичной атмосферы Земли. Одна из первых гипотез была высказана Л. Пастером (1822—1895) во второй половине XIX века. Пастер предположил, что первичная атмосфера Земли не содержала кислорода и что первыми видами живых организмов на нашей планете были, вероятно, бактерии, у которых обмен веществ происходил без участия кислорода. Они носят название анаэробных. Многие виды анаэробных бактерий существуют и по сей день. Пас-тер также утверждал, что наличие кислорода в атмосфере могло бы воспрепятствовать развитию этих бактерий и таким образом затормозить появление жизни на нашей планете.

Первичная атмосфера

Что послужило толчком к возникновению атмосферы на Земле и какие газы входили в состав первичной атмосферы? На нашей планете сначала не было вообще никакой атмосферы. Возможно, молекулы газов под действием тепла планеты улетали в космос. По мере того как Земля приобретала все более определенную форму, начали появляться атмосферные газы, первоначально входившие в состав горных пород, находившихся как на поверхности, так я под поверхностью планеты.

На первичной Земле было много действующих вулканов. При извержении их выбрасывались водяной пар, пыль и множество газов, в том числе углекислый газ, азот, окись углерода, сернистые дымы.

Однако планета в это время оставалась еще настолько теплой, что конденсироваться газы не могли. По мере понижения температуры планеты в атмосфере появилась вода, не только газообразная, но и жидкая, а при дальнейшем охлаждении стали выпадать обильные дожди.

На еще горячей земной поверхности выпавший дождь закипал и в виде пара возвращался в атмосферу. Этот процесс ускорял и охлаждение земной поверхности. Значительная часть выпавшей воды быстро находила путь в начинавшие формироваться океаны. Вулканические извержения продолжали снабжать атмосферу водяным паром, которой в конечном счете пополнял запасы жидкой воды на планете. Значительная часть углекислого газа, легко растворяющегося в воде, вымывалась из атмосферы дождями и начинала принимать участие в биологических процессах, происходивших на Земле. С геохимической точки зрения из углекислого газа на Земле образовались все известняковые горные породы.

Возникновение органических соединений

В 1920-х годах английский биолог-теоретик И. Хелден установил, что первичная атмосфера, по-видимому, содержала углекислый газ, водяной пар и аммиак (соединение азота). Эти вещества образовали основу для зарождения первых органических соединений в водоемах и морях первичной Земли. Энергию для химических реакций, объединяющих эти вещества в сложные молекулы, могли доставлять ультрафиолетовые солнечные лучи, интенсивно падавшие на еще недостаточно защищенную от них Землю.

Взгляды Хелдена были пересмотрены советским ученым А. И. Опариным, который считает, что состав первичной атмосферы был несколько иным. Он полагает, что основными газообразными составными частями первичной атмосферы были водород, водяной пар, аммиак и метан (соединение углерода, аналогичное болотному газу).

Многие исследователи высказывали другие соображения о соединениях, входивших в состав первичной атмосферы. Так, например, П. Абельсон считает, что первичная атмосфера была богата азотом, водородом и углекислым газом и что эти газы под действием ультрафиолетовых лучей вступали в реакции друг с другом, что и привело к возникновению первичных органических соединений.

Примерно 2,5—3 миллиарда лет назад под влиянием солнечной радиации и ее взаимодействия с газами атмосферы начали возникать органические вещества. В результате процессов, природа которых пока не выяснена, они образовали сложные клетки, ставшие основой первичных, а затем и более развитых форм жизни. Под воздействием некоторых ферментов, игравших роль катализаторов, в первичных органических клетках возник обмен веществ, который способствовал постепенному развитию более крупных органических соединений.

Кислород, один из главных газов, поддерживающих жизнь на Земле, в чистом виде начал поступать в атмосферу на сравнительно позднем этапе развития планеты. Хотя происхождение первоначальных запасов кислорода и остается еще неясным, все же существует предположение, что первичный кислород появился в результате взаимодействия солнечной радиации с молекулами воды, находившимися в атмосфере. Это взаимодействие приводило к расщеплению молекул воды на газообразные водород и кислород. Свободный кислород становился доступным для развивающихся живых организмов, которые нуждались в нем. Такую последовательность событий ставят под сомнение некоторые ученые, не разделяющие мнения как с количестве кислорода, образующегося при распаде молекул воды, так и о продолжительности периода, необходимого для накопления в атмосфере современного количества кислорода. Эти ученые считают более вероятным, что кислород образовался в результате обмена веществ в первичном растительном покрове Земли и стал побочным продуктом фотосинтеза. Когда такой фотосинтетический кислород накопился в атмосфере в значительном количестве, он вызвал большие изменения и в характере земной атмосферы и в живых организмах, населяющих нашу планету.

Таким образом, атмосфера не сразу приняла современное состояние, которое теперь хорошо изучено . Она состоит из 4 основных и нескольких второстепенных газов и, кроме того, содержит много различных переменных составных частей, называемых примесями. Количество примесей сильно зависит от характера земной поверхности в каждом конкретном месте, а также от числа и вида живущих там организмов. Человек, конечно, тоже участвует в формировании состава этих примесей.

К числу атмосферных примесей относятся, в частности, водяной пар, озон, перекись водорода, аммиак, сероводород, окись углерода, сернистый газ, пыль, различные соли и т. д. Легко видеть, что газовый состав современной атмосферы сильно отличается от газового состава первичной атмосферы и отражает многие особенности ее эволюции.

Газы атмосферы:

Азот - 78,084%

Кислород - 20,946 %

Аргон - 0,934 %

Углекислый газ - 0,033 %

Неон - 0,000018 %

Гелий - 0,00000524 %

Метан - 0,000002 %

Криптон -  0,0000114 %

Водород - 0,0000005 %

Окислы азота - 0,0000005 %

Ксенон - 0,000000087%

Состав атмосферы

Великий французский ученый А. Лавуазье (1743—1794) первым установил, что воздух представляет собой смесь газов . Лавуазье исследовал эти газы и определил основные их свойства. Однако представления его о природе земной атмосферы частично были ошибочны.

В нижнем слое атмосферы, в тропосфере, состав воздуха сравнительно однороден. Именно этот слой особенно интересен для метеорологов, поскольку в нем формируется погода.

Газы атмосферы

Самый распространенный в атмосфере газ — азот. В нижних слоях атмосферы содержится 78% этого газа. Будучи в газообразном состоянии химически инертным, азот в соединениях, называемых нитратами, играет важную роль в обмене веществ в растительном покрове и животном мире.

Животные не могут усваивать азот непосредственно из воздуха. Но он входит в состав пищи, которую животные получают ежедневно в виде корма. Свободный азот из воздуха захватывается бактериями, содержащимися в корнях таких растений, как бобовые . Нитраты, создающиеся при этом растениями, становятся доступными для животных, питающихся этими растениями.

В биологическом отношении самый активный газ атмосферы — кислород. Его содержание в атмосфере — около 21 % — сравнительно неизменно. Это объясняется тем, что непрерывное использование кислорода животными уравновешивается выделением его растениями. Животные поглощают кислород в процессе дыхания. Растения же выделяют его как побочный продукт фотосинтеза, но и поглощают его при дыхании. В результате этих и других взаимосвязанных процессов общее количество кислорода в земной атмосфере, по крайней мере в настоящее время, более или менее сбалансировано, т. е. приблизительно постоянно.

С точки зрения метеоролога и климатолога одной из самых важных составных частей атмосферы является углекислый газ. Хотя по объему он занимает всего 0,03%, изменение его содержания может коренным образом изменить погоду и климат Земли. Позднее мы рассмотрим более подробно основные атмосферные процессы, в которых углекислый газ играет важную роль. Однако сейчас интересно отметить, что удвоение содержания углекислого газа в атмосфере, т. е. увеличение его объема до 0,06%, может повысить температуру на земном шаре на 3°С. На первый взгляд такое повышение кажется незначительным. Но оно стало бы причиной коренного изменения климата на всей Земле. Приблизительно в течение 120 лет, прошедших после начала великой промышленной революции прошлого века, человечество непрерывно увеличивало выброс в атмосферу не только углекислого, но и других газов. И хотя количество углекислого газа в атмосфере пока не удвоилось, средняя температура воздуха на Земле за период с 1869 по 1940 г. тем не менее выросла на 1°С. Правда, предполагают, что содержание углекислого газа на Земле менялось и в прошлом. Изменения эти безусловно могут влиять на климат и потому приковывают к себе внимание метеорологов и климатологов всего мира.

В атмосфере есть газы, которые не участвуют в биологических процессах, однако некоторые из них играют важную роль в переносе энергии в высоких слоях. К числу таких газов относятся аргон, неон, гелий, водород, ксенон, озон (трехатомная разновидность кислорода — О3).

Другие вещества в атмосфере

Кроме перечисленных выше газов в атмосфере находится много веществ в твердом и в жидком состоянии. Так, в атмосферу поступают различные виды пыли (в результате промышленной деятельности человека, при сдувании верхнего слоя почвы ветром), а при вулканических извержениях, кроме того, водяной пар и сернистый газ. В атмосферу переносится с растительного покрова бесчисленное количество пыльцы, спор и семян. В атмосфере встречаются также различные микроорганизмы. Все эти примеси ветер переносит на тысячи километров. Вместе с брызгами морской воды в атмосферу поступают кристаллики солей.

Вулкан Кракатау при извержении, происшедшем в 1883 г., выбросил в атмосферу дым и пепел. В районе извержения при заходе солнца наблюдалась зеленая вечерняя заря. Пепел, занесенный в атмосферу, оказывал значительное влияние на приход солнечной радиации на земную поверхность в северном полушарии в течение 1—3 лет. Есть доказательства того, что этот пепел несколько охладил атмосферу.

Различные газы и твердые частицы, попав в атмосферу, по-разному влияют на условия погоды. В частности, они поглощают часть лучистой энергии, приходящей к атмосфере извне. Кристаллики солей становятся ядрами конденсации и участвуют в процессах образования дождя и других видов осадков, т. к. водяной пар конденсируется на кристалликах солей и на других твердых частицах, взвешенных в воздухе.

Слои атмосферы

До начала XX века метеорологи считали всю атмосферу более или менее однородной. В частности, они были убеждены в том, что температура воздуха в атмосфере равномерно убывает с высотой. Лишь в начале XX века было установлено слоистое строение атмосферы.

Исследование высоких слоев атмосферы с помощью различных шаров-зондов и ракет — аэрология — представляет собой сравнительно молодую область метеорологии. В настоящее время уже известно, что с увеличением высоты некоторые физические и химические свойства атмосферы изменяются коренным образом. Первые же вертикальные зондирования показали, что значительно меняется температура воздуха. Но лишь позже выяснилось, что изменяется она далеко не во всех слоях атмосферы одинаково. По мере удаления от Земли свойства атмосферы, в том числе значения температуры, все время изменяются.

Изменение температуры воздуха с высотой

Чтобы несколько упростить рассмотрение вопроса, атмосферу подразделяют на три главных слоя. Расслоение атмосферы — в первую очередь результат неодинакового изменения температуры воздуха с высотой. Нижние два слоя сравнительно однородны по составу. По этой причине обычно говорят, что они образуют гомосферу.

Тропосфера. Нижний слой атмосферы называется тропосферой. Сам этот термин означает „сфера поворота" и связан с характеристиками турбулентности данного слоя. Все перемены погоды и климата являются результатом физических процессов, происходящих именно в этом слое. В XVIII веке, поскольку изучение атмосферы ограничивалось только этим слоем, считалось, будто обнаруженное в нем уменьшение температуры воздуха с высотой присуще и всей остальной атмосфере.

Различные превращения энергии происходят в первую очередь именно в тропосфере. Вследствие непрерывного соприкосновения воздуха с земной поверхностью, а также поступления в него энергии из космоса, он приходит в движение. Верхняя граница этого слоя располагается там, где уменьшение температуры с высотой сменяется ее возрастанием,— примерно на высоте 15—16 км над экватором и 7—8 км над полюсами. Как и сама Земля, атмосфера под влиянием вращения нашей планеты тоже несколько сплющена над полюсами и разбухает над экватором. Однако этот эффект выражен в атмосфере значительно сильнее, чем в твердой оболочке Земли.

В направлении от поверхности Земли к верхней границе тропосферы температура воздуха понижается. Над экватором минимальная температура воздуха составляет около —62°С, а над полюсами около —45°С. Однако в зависимости от пункта измерений температура может быть несколько иной. Так, над островом Ява на верхней границе тропосферы температура воздуха падает до рекордно низкого значения —95°С.

Верхняя граница тропосферы называется тропопаузой. В умеренных широтах более 75% массы атмосферы лежит ниже тропопаузы. В тропиках же в пределах тропосферы находится около 90% массы атмосферы.

Тропопауза была открыта в 1899 г., когда в вертикальном профиле температуры на некоторой высоте был обнаружен ее минимум, а затем температура незначительно повышалась. Начало этого повышения означает переход к следующему слою атмосферы — к стратосфере.

Стратосфера. Термин стратосфера означает „сфера слоя" и отражает прежнее представление о единственности слоя, лежащего выше тропосферы. Стратосфера простирается до высоты около 50 км над земной поверхностью. Особенностью ее является, в частности, резкое повышение температуры воздуха по сравнению с исключительно низкими значениями ее в тропопаузе. В умеренных широтах температура в стратосфере повышается примерно до —40°С. Это повышение температуры объясняют реакцией образования озона — одной из главных химических реакций, происходящих в атмосфере.

Озон представляет собой особую форму кислорода. В отличие от обычной двухатомной молекулы кислорода (О2). озон состоит из трехатомных его молекул (Оз). Появляется он в результате взаимодействия обычного кислорода с лучистой энергией, поступающей в верхние слои атмосферы.

Основная масса озона сосредоточена на высотах примерно 25 км, но в целом слой озона представляет собой сильно растянутую по высоте оболочку, охватывающую почти всю стратосферу. В озоносфере ультрафиолетовые лучи чаще и сильнее всего взаимодействуют с атмосферным кислородом. Лучистая энергия вызывает распад обычных двухатомных молекул кислорода на отдельные атомы. В свою очередь атомы кислорода часто снова присоединяются к двухатомным молекулам и образуют молекулы озона. Таким же образом отдельные атомы кислорода соединяются в двухатомные молекулы. Интенсивность образования озона оказывается достаточной для того, чтобы в стратосфере существовал слой высокой его концентрации.

Взаимодействие кислорода с ультрафиолетовыми лучами — один из благоприятных процессов в земной атмосфере, способствующих поддержанию жизни на Земле. Поглощение озоном этой энергии препятствует излишнему поступлению ее на земную поверхность, где создается именно такой уровень энергии, который пригоден для существования земных форм жизни. Возможно, в прошлом на Землю поступало большее количество энергии, чем теперь, что и оказывало влияние на возникновение первичных форм жизни на нашей планете. Но современные живые организмы не выдержали бы поступления от Солнца более значительного количества ультрафиолетовой радиации.

Озоносфера поглощает часть лучистой энергии, проходщей через атмосферу. В результате этого в озоносфере устанавливается вертикальный градиент температуры воздуха примерно 0,62°С на 100 м, т. е, температура повышается с высотой вплоть до верхнего предела стратосферы — стратопаузы (50 км).

На высотах от 50 до 80 км располагается слой атмосферы, называемый мезосферой. Слово „мезосфера" означает „промежуточная сфера", здесь температура воздуха продолжает понижаться с высотой.

Выше мезосферы, в слое, называемом термосферой, температура снова растет с высотой примерно до 1000°С, а затем очень быстро падает до —96°С. Однако падает не беспредельно, потом температура снова увеличивается.

Ионосфера. Можно считать, что ионосфера начинается с высоты около 80 км над поверхностью Земли.

Расчленение атмосферы на отдельные слои довольно легко заметить по особенностям изменения температуры с высотой в каждом слое.

В отличие от упомянутых ранее слоев, ионосфера выделена не. по температурному признаку. Главная особенность ионосферы — высокая степень ионизации атмосферных газов. Эта ионизация вызвана поглощением солнечной энергии атомами различных газов. Ультрафиолетовые и другие солнечные лучи, несущие кванты высокой энергии, поступая в атмосферу, ионизируют атомы азота и кислорода — от атомов отрываются электроны, находящиеся на внешних орбитах. Теряя электроны, атом приобретает положительный заряд. Если же к атому присоединяется электрон, то атом заряжается отрицательно. Таким образом, ионосфера является областью, имеющей электрическую природу, благодаря которой становятся возможными многие виды радиосвязи.

Ионосферу делят на несколько слоев, обозначая их буквами D, Е, F1 и F2 Эти слои имеют и особые названия. Разделение на слои вызвано несколькими причинами, среди которых самая важная—неодинаковое влияние слоев на прохождение радиоволн. Самый нижний слой, D, в основном поглощает радиоволны и тем самым препятствует дальнейшему их распространению.

Лучше всего изученный слой Е расположен на высоте примерно 100 км над земной поверхностью. Его называют также слоем Кеннелли — Хевисайда по именам американского и английского ученых, которые одновременно и независимо друг от друга обнаружили его. Слой Е, подобно гигантскому зеркалу, отражает радиоволны. Благодаря этому слою длинные радиоволны проходят более далекие расстояния, чем следовало бы ожидать, если бы они распространялись только прямолинейно, не отражаясь от слоя Е

Аналогичные свойства имеет и слой F. Его называют также слоем Эпплтона. Вместе со слоем Кеннелли—Хевисайда он отражаем радиоволны к наземным радиостанциями Такое отражение может происходить под различными углами. Слой Эпплтона расположен на высоте около 240 км.

Самая внешняя область атмосферы часто называется экзосферой.

Этот термин указывает на существование окраины космоса вблизи Земли. Определить, где именно кончается атмосфера и начинается космос, трудно, поскольку с высотой плотность атмосферных газов уменьшается постепенно и сама атмосфера плавно превращается почти в вакуум, в котором встречаются лишь отдельные молекулы. С удалением от земной поверхности атмосферные газы испытывают все меньшее притяжение планеты и с некоторой высоты стремятся покинуть поле земного тяготения. Уже на высоте примерно 320 км плотность атмосферы настолько мала, что молекулы,, не сталкиваясь друг с другом, могут проходить путь более 1 км. Самая внешняя часть атмосферы служит как бы ее верхней границей, которая располагается на высотах от 480 до 960 км.